摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tert-butyl 4-(benzo[d]thiazol-2-ylcarbamoyl)piperidine-1-carboxylate | 1286048-14-3

中文名称
——
中文别名
——
英文名称
tert-butyl 4-(benzo[d]thiazol-2-ylcarbamoyl)piperidine-1-carboxylate
英文别名
Tert-butyl 4-(1,3-benzothiazol-2-ylcarbamoyl)piperidine-1-carboxylate
tert-butyl 4-(benzo[d]thiazol-2-ylcarbamoyl)piperidine-1-carboxylate化学式
CAS
1286048-14-3
化学式
C18H23N3O3S
mdl
——
分子量
361.465
InChiKey
ZTSIMSFRUPPNHL-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.2
  • 重原子数:
    25
  • 可旋转键数:
    4
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    99.8
  • 氢给体数:
    1
  • 氢受体数:
    5

反应信息

  • 作为反应物:
    描述:
    tert-butyl 4-(benzo[d]thiazol-2-ylcarbamoyl)piperidine-1-carboxylate碳酸氢钠N,N-二异丙基乙胺三氟乙酸 作用下, 以 二氯甲烷 为溶剂, 反应 4.0h, 生成 methyl (4-(benzo[d]thiazol-2-ylcarbamoyl)piperidine-1-carbonyl)-L-leucinate
    参考文献:
    名称:
    Covalent docking modelling-based discovery of tripeptidyl epoxyketone proteasome inhibitors composed of aliphatic-heterocycles
    摘要:
    The potential of specific proteasome inhibitors to act as anti-cancer agents has attracted intensive investigations. The proteasome can be covalently inhibited by epoxyketone derivatives via a two-step reaction. Several computational approaches have been developed to mimic the covalent binding event. Compound 1 composed of a six-membered heterocyclic ring was designed by using covalent docking. With a possible different binding mode from the clinical compound Carfilzomib, it occupied the 55 pocket of 20S proteasome and showed favorable inhibitory activity. Subsequently optimization and evaluation were taken place. Among these compounds, 11h demonstrated extraordinary in vitro inhibitory activity and selectivity, and good in vivo proteasome inhibitory activity, a favorable pharmacokinetic profile and xenograft tumor inhibition. The possible binding pattern of compound 11h against proteasome was further fully explored via calculations, providing a theoretical basis for finding potent proteasome inhibitors. (C) 2018 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2018.12.064
  • 作为产物:
    描述:
    2-氨基苯并噻唑1-Boc-4-哌啶甲酸吡啶氯化亚砜三乙胺 作用下, 以 二氯甲烷 为溶剂, 反应 6.5h, 以74%的产率得到tert-butyl 4-(benzo[d]thiazol-2-ylcarbamoyl)piperidine-1-carboxylate
    参考文献:
    名称:
    Covalent docking modelling-based discovery of tripeptidyl epoxyketone proteasome inhibitors composed of aliphatic-heterocycles
    摘要:
    The potential of specific proteasome inhibitors to act as anti-cancer agents has attracted intensive investigations. The proteasome can be covalently inhibited by epoxyketone derivatives via a two-step reaction. Several computational approaches have been developed to mimic the covalent binding event. Compound 1 composed of a six-membered heterocyclic ring was designed by using covalent docking. With a possible different binding mode from the clinical compound Carfilzomib, it occupied the 55 pocket of 20S proteasome and showed favorable inhibitory activity. Subsequently optimization and evaluation were taken place. Among these compounds, 11h demonstrated extraordinary in vitro inhibitory activity and selectivity, and good in vivo proteasome inhibitory activity, a favorable pharmacokinetic profile and xenograft tumor inhibition. The possible binding pattern of compound 11h against proteasome was further fully explored via calculations, providing a theoretical basis for finding potent proteasome inhibitors. (C) 2018 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2018.12.064
点击查看最新优质反应信息

文献信息

  • Benzoxazole piperidines as selective and potent somatostatin receptor subtype 5 antagonists
    作者:Rainer E. Martin、Peter Mohr、Hans Peter Maerki、Wolfgang Guba、Christoph Kuratli、Olivier Gavelle、Alfred Binggeli、Stefanie Bendels、Rubén Alvarez-Sánchez、André Alker、Liudmila Polonchuk、Andreas D. Christ
    DOI:10.1016/j.bmcl.2009.09.024
    日期:2009.11
    SAR studies of a recently described SST5R selective benzoxazole piperidine lead series are described with particular focus on the substitution pattern on the benzyl and benzoxazole side-chains. Introduction of a second meta substituent at the benzyl unit significantly lowers residual hH1 activity and insertion of substituents onto the benzoxazole periphery entirely removes remaining h5-HT(2B) activity. Compounds with single digit nM activity, functional antagonism and favorable physicochemical properties endowed with a good pharmacokinetic pro. le in rats are described which should become valuable tools for exploring the pharmacological role of the SST5 receptor in vivo. (c) 2009 Elsevier Ltd. All rights reserved.
  • Covalent docking modelling-based discovery of tripeptidyl epoxyketone proteasome inhibitors composed of aliphatic-heterocycles
    作者:Xiao-Wu Dong、Jian-Kang Zhang、Lei Xu、Jin-Xin Che、Gang Cheng、Xiao-Bei Hu、Li Sheng、An-Hui Gao、Jia Li、Tao Liu、Yong-Zhou Hu、Yu-Bo Zhou
    DOI:10.1016/j.ejmech.2018.12.064
    日期:2019.2
    The potential of specific proteasome inhibitors to act as anti-cancer agents has attracted intensive investigations. The proteasome can be covalently inhibited by epoxyketone derivatives via a two-step reaction. Several computational approaches have been developed to mimic the covalent binding event. Compound 1 composed of a six-membered heterocyclic ring was designed by using covalent docking. With a possible different binding mode from the clinical compound Carfilzomib, it occupied the 55 pocket of 20S proteasome and showed favorable inhibitory activity. Subsequently optimization and evaluation were taken place. Among these compounds, 11h demonstrated extraordinary in vitro inhibitory activity and selectivity, and good in vivo proteasome inhibitory activity, a favorable pharmacokinetic profile and xenograft tumor inhibition. The possible binding pattern of compound 11h against proteasome was further fully explored via calculations, providing a theoretical basis for finding potent proteasome inhibitors. (C) 2018 Elsevier Masson SAS. All rights reserved.
查看更多

同类化合物

(1Z)-1-(3-乙基-5-羟基-2(3H)-苯并噻唑基)-2-丙酮 齐拉西酮砜 阳离子蓝NBLH 阳离子荧光黄4GL 锂2-(4-氨基苯基)-5-甲基-1,3-苯并噻唑-7-磺酸酯 铜酸盐(4-),[2-[2-[[2-[3-[[4-氯-6-[乙基[4-[[2-(硫代氧代)乙基]磺酰]苯基]氨基]-1,3,5-三嗪-2-基]氨基]-2-(羟基-kO)-5-硫代苯基]二氮烯基-kN2]苯基甲基]二氮烯基-kN1]-4-硫代苯酸根(6-)-kO]-,(1:4)氢,(SP-4-3)- 铜羟基氟化物 钾2-(4-氨基苯基)-5-甲基-1,3-苯并噻唑-7-磺酸酯 钠3-(2-{(Z)-[3-(3-磺酸丙基)-1,3-苯并噻唑-2(3H)-亚基]甲基}[1]苯并噻吩并[2,3-d][1,3]噻唑-3-鎓-3-基)-1-丙烷磺酸酯 邻氯苯骈噻唑酮 西贝奈迪 螺[3H-1,3-苯并噻唑-2,1'-环戊烷] 螺[3H-1,3-苯并噻唑-2,1'-环己烷] 葡萄属英A 草酸;N-[1-[4-(2-苯基乙基)哌嗪-1-基]丙-2-基]-2-丙-2-基氧基-1,3-苯并噻唑-6-胺 苯酰胺,N-2-苯并噻唑基-4-(苯基甲氧基)- 苯酚,3-[[2-(三苯代甲基)-2H-四唑-5-基]甲基]- 苯胺,N-(3-苯基-2(3H)-苯并噻唑亚基)- 苯碳杂氧杂脒,N-1,2-苯并异噻唑-3-基- 苯甲基2-甲基哌啶-1,2-二羧酸酯 苯并噻唑正离子,2-[3-(1,3-二氢-1,3,3-三甲基-2H-吲哚-2-亚基)-1-丙烯-1-基]-3-乙基-,碘化(1:1) 苯并噻唑正离子,2-[(2-乙氧基-2-羰基乙基)硫代]-3-甲基-,溴化 苯并噻唑啉 苯并噻唑-d4 苯并噻唑-6-腈 苯并噻唑-5-羧酸 苯并噻唑-5-硼酸频哪醇酯 苯并噻唑-4-醛 苯并噻唑-4-乙酸 苯并噻唑-2-磺酸钠 苯并噻唑-2-磺酸 苯并噻唑-2-磺酰氟 苯并噻唑-2-甲醛 苯并噻唑-2-甲酸 苯并噻唑-2-甲基甲胺 苯并噻唑-2-基磺酰氯 苯并噻唑-2-基叠氮化物 苯并噻唑-2-基-邻甲苯-胺 苯并噻唑-2-基-己基-胺 苯并噻唑-2-基-(4-氯-苯基)-胺 苯并噻唑-2-基-(4-氟-苯基)-胺 苯并噻唑-2-基-(4-乙氧基-苯基)-胺 苯并噻唑-2-基-(2-甲氧基-苯基)-胺 苯并噻唑-2-基-(2,6-二甲基-苯基)-胺 苯并噻唑-2-基(对甲苯基)甲醇 苯并噻唑-2-乙酸甲酯 苯并噻唑-2-乙腈 苯并噻唑-2(3H)-酮N2-[1-(吡啶-4-基)乙亚基]腙 苯并噻唑-2 - 丙基 苯并噻唑,6-(3-乙基-2-三氮烯基)-2-甲基-(8CI)