Efficient Zirconocene-Coupling of Silicon-Substituted Diynes to Polymers and Macrocycles
摘要:
The zirconocene-coupling of diynes with internal silicon substituents, MeC=CMe2SiArSiMe2C=CMe (1: Ar = 1,4-C6H4; 2: Ar = 1,3-C6H4; 3: Ar = 4,4'-C6H4C6H4), generates regiospecific polymers containing zirconacyclopentadiene in the main chain (5-7). These organometallic polymers hydrolyze cleanly to butadienediyl polymers of the type [Me2SiArSiMe2CH=CMeCMe=CH](n) (11-13), and polymer 5 reacts with iodine to give the iodine-containing polymer [1,4-Me2SiC6H4SiMe2C(I)=CMeCMe=C(I)](n) (14). The organometallic polymers undergo facile and high-yield degradations to macrocycles under mild conditions (refluxing tetrahydrofuran solution). The size and shape of the resulting macrocycles depend upon the nature of the diyne spacer group. Thus, polymers 5 and 7 containing parallel diyne units convert to the trimeric macrocycles [Me2SiArSiMe2C4Me2ZrCp2](3) (15: Ar = 1,4-C6H4; 24: Ar = 4,4'-C6H4C6H4), while polymer 6 gives the dimeric macrocycle [1,3-Me2SiC6H4SiMe2C4Me2ZrCp2](2) (18). The dimeric macrocycle [Me2SiC6H4-SiMe2C6H4SiMe2C4Me2ZrCp2](2) (20) was obtained directly from the zirconocene coupling of Me2Si[(1,4-C6H4)SiMe2(C=CMe)](2) (4) by heating the reaction mixture to reflux. In. similar manner, the diyne Me2Si(C=CMe)(2) was converted in high yield to the hexameric macrocycle [Me2SiC4Me2ZrCp2](6) (22). The macrocycles 15, [1,4-Me2SiC6H4SiMe2C4Me2H2](3) (16), and 18 were characterized by single-crystal X-ray crystallography. Molecules of 15 adopt a nearly planar Cg macrocyclic structure with a cavity described by an average transannular Si ... Si distance of 13.2 Angstrom, while the hydrolyzed macrocycle 16 has a chair conformation. This conformation change results from conversion of cis diene groups in the zirconacyclopendiene fragments to trans diene groups in 16. The high-yield formation of macrocycles apparently results from the reversible nature of the alkyne-coupling reaction, which allows for a low-energy pathway to the smallest macrocycle possessing minimal ring strain.
Efficient Zirconocene-Coupling of Silicon-Substituted Diynes to Polymers and Macrocycles
摘要:
The zirconocene-coupling of diynes with internal silicon substituents, MeC=CMe2SiArSiMe2C=CMe (1: Ar = 1,4-C6H4; 2: Ar = 1,3-C6H4; 3: Ar = 4,4'-C6H4C6H4), generates regiospecific polymers containing zirconacyclopentadiene in the main chain (5-7). These organometallic polymers hydrolyze cleanly to butadienediyl polymers of the type [Me2SiArSiMe2CH=CMeCMe=CH](n) (11-13), and polymer 5 reacts with iodine to give the iodine-containing polymer [1,4-Me2SiC6H4SiMe2C(I)=CMeCMe=C(I)](n) (14). The organometallic polymers undergo facile and high-yield degradations to macrocycles under mild conditions (refluxing tetrahydrofuran solution). The size and shape of the resulting macrocycles depend upon the nature of the diyne spacer group. Thus, polymers 5 and 7 containing parallel diyne units convert to the trimeric macrocycles [Me2SiArSiMe2C4Me2ZrCp2](3) (15: Ar = 1,4-C6H4; 24: Ar = 4,4'-C6H4C6H4), while polymer 6 gives the dimeric macrocycle [1,3-Me2SiC6H4SiMe2C4Me2ZrCp2](2) (18). The dimeric macrocycle [Me2SiC6H4-SiMe2C6H4SiMe2C4Me2ZrCp2](2) (20) was obtained directly from the zirconocene coupling of Me2Si[(1,4-C6H4)SiMe2(C=CMe)](2) (4) by heating the reaction mixture to reflux. In. similar manner, the diyne Me2Si(C=CMe)(2) was converted in high yield to the hexameric macrocycle [Me2SiC4Me2ZrCp2](6) (22). The macrocycles 15, [1,4-Me2SiC6H4SiMe2C4Me2H2](3) (16), and 18 were characterized by single-crystal X-ray crystallography. Molecules of 15 adopt a nearly planar Cg macrocyclic structure with a cavity described by an average transannular Si ... Si distance of 13.2 Angstrom, while the hydrolyzed macrocycle 16 has a chair conformation. This conformation change results from conversion of cis diene groups in the zirconacyclopendiene fragments to trans diene groups in 16. The high-yield formation of macrocycles apparently results from the reversible nature of the alkyne-coupling reaction, which allows for a low-energy pathway to the smallest macrocycle possessing minimal ring strain.
Zirconocene Complexes as Catalysts for the Cycloaddition of CO
<sub>2</sub>
to Propylene Oxide
作者:So Han Kim、Duseong Ahn、Yi Young Kang、Min Kim、Ki‐Soo Lee、Junseong Lee、Myung Hwan Park、Youngjo Kim
DOI:10.1002/ejic.201402782
日期:2014.10
Six zirconocene derivatives were systematically designed; one of the cyclopentadienyl (Cp) ligands of zirconocene dichloride [Cp2ZrCl2] was silylated and this group was then incrementally increased in size; furthermore, one derivative with a 4,4′-disilylbiphenyl bridge between the two zirconocene fragments was prepared. One zirconium complex was characterized by single-crystal X-ray analysis. All zirconium
系统设计了六种二茂锆衍生物;二氯化锆 [Cp2ZrCl2] 的环戊二烯基 (Cp) 配体之一被甲硅烷基化,然后该基团的大小逐渐增加;此外,制备了一种在两个二茂锆片段之间具有 4,4'-二甲硅烷基联苯桥的衍生物。一种锆配合物通过单晶 X 射线分析表征。所有锆配合物都是将 CO2 环加成到环氧丙烷的有效催化剂。含有连接到 SiMe2 基团的联苯基的两种配合物显示出比其他配合物更高的活性。此外,在所有报道的锆配合物中,含有联亚苯基双(二甲基甲硅烷基)桥的双核配合物显示出最高的活性。此外,