作者:Benjamin A. Lowery、Brad Andersh、Terry A. Isbell
DOI:10.1007/s11746-013-2224-1
日期:2013.6
AbstractVegetable oil based lubricants typically have improved lubricity and biodegradability over their mineral oil based counterparts. However, vegetable oil lubricants often fail to meet the performance standards of mineral based oils with respect to cold temperature and resistance to oxidation. Olefins are an oxidatively weak point for vegetable based compounds. Removal of the olefin in a vegetable based lubricant through functionalization may increase resistance to oxidation. If the added functionality also causes branching of the alkyl chain, cold temperature properties may be improved. Any chemical modifications considered must be scalable and cost‐effective to be useful in a commercial application. In this study, methyl oleate was functionalized into a chloro alkoxy derivative. Sodium hypochlorite (household bleach) and calcium hypochlorite were both used to generate hypochlorous acid in situ. Hypochlorous acid and a series of alcohols (methanol, ethanol, and butanol) were reacted with methyl oleate to make chloro alkoxy compounds in 29.8–77.9 % yields. In an effort to make a branched saturated ether we removed the chlorine moiety of the chloro alkoxy compounds. Dehalogenation was achieved under basic conditions over a Pd/C catalyst in 2‐propanol. Reaction times increased substantially as the size of the adjacent alkoxy group increased. The reaction rate could be improved by heating the reactions above 100 °C in a pressure reactor. Increased reaction temperature also resulted in an increase in ketone side products from the competing elimination reactions. Saturated ether yields were 4.1–43.2 %.