高能 HOMO 的必要性和满足此要求的化合物的空气敏感性阻碍了用于有机半导体材料的空气稳定 n 掺杂剂的发现。解决这个问题的一种策略是利用稳定的前体分子,在掺杂过程中或在沉积后的热激活或光激活步骤中原位形成活性掺杂复合物。我们中的一些人已经报道了分别使用 1H-苯并咪唑 (DMBI) 和苯并咪唑鎓 (DMBI-I) 盐作为可溶液和真空加工的 n 型掺杂剂前体。最初建议 DMBI 掺杂剂用作单电子自由基供体,其中活性掺杂物质,咪唑啉自由基,在沉积后热退火步骤中产生。在此,我们报告了对 DMBI 掺杂富勒烯的广泛机理研究的结果,其结果表明更复杂的掺杂机制在起作用。具体而言,掺杂剂和主体之间的反应始于氢化物或氢原子转移,最终导致主体自由基阴离子的形成,这是掺杂效应的原因。这项研究的结果将有助于确定当前有机 n 掺杂技术的应用,并将推动下一代 n 型掺杂剂的设计,这些掺杂剂具有空气稳定性,能够在有
activation energies of various hydridetransferreactions was developed according to transition state theory using the Morse-type free energy curves of hydride donors to release a hydride anion and hydrideacceptors to capture a hydride anion and by which the activation energies of 187 typical hydride self-exchange reactions and more than thirty thousand hydride cross transferreactions in acetonitrile were
report visible-light-driven hydroacylation of unactivatedalkenes. We employed benzimidazolines as new acyl donors and achieved perfect regioselectivity, high functional-group tolerance, and excellent substrate generality. We also performed mechanistic experiments to elucidate the detailed reaction mechanism. This is the first example of (1) hydroacylation of unactivatedalkenes using (2) easily prepared