Heat-Resistant Liquid Crystalline Polymer Composition having a Low Melting Temperature
申请人:Gray Steven D.
公开号:US20130048908A1
公开(公告)日:2013-02-28
A thermotropic liquid crystalline polymer composition capable of exhibiting both a low melting temperature and good heat resistance without the use of conventional naphthenic acids is provided. The melting temperature may, for example, range from about 250° C. to about 400° C. Even at such low melting temperatures, the present inventors have surprisingly discovered that the ratio of the deflection temperature under load (“DTUL”), a measure of short term heat resistance, to the melting temperature may remain relatively high. The specific DTUL values may range from about 200° C. to about 300° C. The ability to form a polymer composition with the properties noted above may be achieved, at least in part, by the use of an aromatic amide oligomer.
High Flow Liquid Crystalline Polymer Composition
申请人:Nair Kamlesh P.
公开号:US20130048909A1
公开(公告)日:2013-02-28
A liquid crystalline polymer composition that contains a liquid crystalline polymer and an aromatic amide oligomer is provided. The oligomer can serve as a flow aid by altering intermolecular polymer chain interactions, thereby lowering the overall viscosity of the polymer matrix under shear. The oligomer is also not easily volatized or decomposed during compounding, molding, and/or use, which minimizes off-gassing and the formation of blisters that would otherwise impact the final mechanical properties of a part made from the polymer composition. While providing the benefits noted, the aromatic amide oligomer does not generally react with the polymer backbone of the liquid crystalline polymer to any appreciable extent so that the mechanical properties of the polymer are not adversely impacted.
Melt-Extruded Substrate for Use in Thermoformed Articles
申请人:Nair Kamlesh P.
公开号:US20130052446A1
公开(公告)日:2013-02-28
A melt-extruded substrate that can be readily thermoformed into a shaped, three-dimensional article is provided. The substrate is formed from a polymer composition that contains a thermotropic liquid crystalline polymer and a unique aromatic amide oligomer. The present inventors have discovered that the oligomer can help increase the “low shear” complex viscosity of the resulting polymer. The ability to achieve enhanced low shear viscosity values can lead to polymer compositions with an increased melt strength, which allows the resulting substrate to better maintain its shape during thermoforming without exhibiting a substantial amount of sag. Due to its relatively high degree of melt strength, the polymer composition is particularly well suited for forming thin extruded substrates for use in thermoforming processes.
Liquid Crystalline Polymer Composition Containing a Fibrous Filler
申请人:Grenci Joseph J.
公开号:US20130052447A1
公开(公告)日:2013-02-28
A polymer composition that contains a thermotropic liquid crystalline polymer, fibrous filler (e.g., glass fibers), and a flow aid is provided. The flow aid is in the form of an aromatic amide oligomer which, due to its unique nature and properties, has the ability to dramatically reduce melt viscosity with only a minimal degree of blending with the polymer. More particularly, the fibrous filler is supplied to an extruder in conjunction with the polymer and/or at a location downstream thereof so that the polymer is still in a solid or solid-like state when it initially contacts the filler. In this manner, the fibrous filler and polymer are allowed to mix together while the composition still has a relatively high melt viscosity, which helps to uniformly disperse the fibrous filler within the polymer matrix. After a certain period of time, the aromatic amide oligomer is then supplied to the extruder at a location downstream from the fibrous filler to reduce the melt viscosity of the composition.
Thermotropic Liquid Crystalline Polymer with Improved Low Shear Viscosity
申请人:Nair Kamlesh P.
公开号:US20130048910A1
公开(公告)日:2013-02-28
A thermotropic liquid crystalline polymer melt polymerized in the presence of a viscosity modifier that can help increase the “low shear” viscosity of the resulting composition is provided. The increased “low shear” viscosity can minimize drooling of the polymer composition during processing and also allow it to possess a greater melt strength, which facilitates its ability to be processed in a wide variety of applications without losing its physical integrity. Despite having a relatively high “low shear” viscosity, the present inventors have discovered that the viscosity modifier does not substantially increase the “high shear” melt viscosity of the polymer composition. In this regard, the ratio of the “low shear” viscosity to the melt viscosity is generally very high, such as within a range of from about 50 to about 1000.