摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,6-dimethyl-3-hydroxy-4-pyridinecarboxylic acid | 4328-87-4

中文名称
——
中文别名
——
英文名称
2,6-dimethyl-3-hydroxy-4-pyridinecarboxylic acid
英文别名
3-hydroxy-2,6-dimethylpyridine-4-carboxylic acid;3-hydroxy-2,6-dimethyl-isonicotinic acid;2,6-Dimethyl-3-hydroxyisonicotinic acid;3-Hydroxy-2,6-dimethylisonicotinic acid
2,6-dimethyl-3-hydroxy-4-pyridinecarboxylic acid化学式
CAS
4328-87-4
化学式
C8H9NO3
mdl
MFCD18803451
分子量
167.164
InChiKey
HMUZXOCYGAVFIY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    294-295 °C(Solv: benzene (71-43-2))
  • 沸点:
    470.0±45.0 °C(Predicted)
  • 密度:
    1.324±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.4
  • 重原子数:
    12
  • 可旋转键数:
    1
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    70.4
  • 氢给体数:
    2
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    描述:
    2,6-dimethyl-3-hydroxy-4-pyridinecarboxylic acid盐酸双氧水sodium carbonate 作用下, 以 四氢呋喃 为溶剂, 反应 2.0h, 生成
    参考文献:
    名称:
    Evaluation of 1,2-dimethyl-3-hydroxy-4-pyridinecarboxylic acid and of other 3-hydroxy-4-pyridinecarboxylic acid derivatives for possible application in iron and aluminium chelation therapy
    摘要:
    Four new possible chelating agents for iron and aluminium, 1,2-dimethyl-3-hydroxy-4-pyridinecarboxylic acid (DT712), 3-hydroxy-1,2,6-trimethyl-4-pyridinecarboxylic acid, 2,6-dimethyl-3-hydroxy-4-pyridinecarboxylic acid, and 2-ethyl-3-hydroxy-1-methyl-4-pyridinecarboxylic acid, were synthesized, and their complex formation with Fe(III) and Al(III) was studied by potentiometry, UV-Vis, H-1 NMR, and electrospray mass spectrometry (ESI-MS). Number, stoichiometry, and stability constants of metal-ligand complexes were obtained at 25 C in aqueous (Na)Cl 0.6 m. DT712 is the most promising hydroxypyridinecarboxylic acid considered so far for iron chelation therapy, as it forms the strongest Fe(III) complexes. This compound was further investigated to better clarify its possible behaviour in vivo with particular respect to iron chelation therapy. UV-Vis measurements were performed to determine the kinetics by which DT712 extracts Fe(III) from transferrin. DT712 resulted to have better kinetic properties than existing iron chelators. Ternary metal/DT712/citric acid complexes were studied by ESI-MS to check the competition with a typical low molecular weight ligand in the blood. The formation of only binary Fe(III)/ DT712 and Al(III)/DT712 complexes (and ternary complexes in aged solutions), suggests that DT712 effectively compete with citric acid in the metal complexation. Standard reduction potentials of Fe(III)/DT712 complexes, and the kinetic constants of complex formation, were obtained by cyclic voltammetiy. Accordingly, no redox cycling is expected to occur at in vivo conditions, and Fe(III)/DT712 complex formation should not be kinetically limited. On the basis of the present results, DT712 is proposed as candidate for iron chelation therapy. (C) 2013 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.poly.2013.10.007
  • 作为产物:
    描述:
    参考文献:
    名称:
    Evaluation of 1,2-dimethyl-3-hydroxy-4-pyridinecarboxylic acid and of other 3-hydroxy-4-pyridinecarboxylic acid derivatives for possible application in iron and aluminium chelation therapy
    摘要:
    Four new possible chelating agents for iron and aluminium, 1,2-dimethyl-3-hydroxy-4-pyridinecarboxylic acid (DT712), 3-hydroxy-1,2,6-trimethyl-4-pyridinecarboxylic acid, 2,6-dimethyl-3-hydroxy-4-pyridinecarboxylic acid, and 2-ethyl-3-hydroxy-1-methyl-4-pyridinecarboxylic acid, were synthesized, and their complex formation with Fe(III) and Al(III) was studied by potentiometry, UV-Vis, H-1 NMR, and electrospray mass spectrometry (ESI-MS). Number, stoichiometry, and stability constants of metal-ligand complexes were obtained at 25 C in aqueous (Na)Cl 0.6 m. DT712 is the most promising hydroxypyridinecarboxylic acid considered so far for iron chelation therapy, as it forms the strongest Fe(III) complexes. This compound was further investigated to better clarify its possible behaviour in vivo with particular respect to iron chelation therapy. UV-Vis measurements were performed to determine the kinetics by which DT712 extracts Fe(III) from transferrin. DT712 resulted to have better kinetic properties than existing iron chelators. Ternary metal/DT712/citric acid complexes were studied by ESI-MS to check the competition with a typical low molecular weight ligand in the blood. The formation of only binary Fe(III)/ DT712 and Al(III)/DT712 complexes (and ternary complexes in aged solutions), suggests that DT712 effectively compete with citric acid in the metal complexation. Standard reduction potentials of Fe(III)/DT712 complexes, and the kinetic constants of complex formation, were obtained by cyclic voltammetiy. Accordingly, no redox cycling is expected to occur at in vivo conditions, and Fe(III)/DT712 complex formation should not be kinetically limited. On the basis of the present results, DT712 is proposed as candidate for iron chelation therapy. (C) 2013 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.poly.2013.10.007
点击查看最新优质反应信息

文献信息

  • One-pot synthesis of pyridine derivatives via diels-alder reactions of 2,4-dimethyl-5-methoxyoxazole
    作者:Samir Bondock
    DOI:10.1002/hc.20064
    日期:——
    A novel series of pyridine derivatives with anticipated biological activity have been synthesized via Diels-Alder reactions of 2,4-dimethyl-5-methoxyoxazole with different types of dienophiles. The regioselectivity of the cycloaddition was inverted from methylacrylate to tert-butylacrylate. The structural elucidation of the new compounds was carried on the basis of spectral and X-ray analyses. © 2005
    通过 2,4-二甲基-5-甲氧基恶唑与不同类型的亲二烯体的 Diels-Alder 反应合成了一系列具有预期生物活性的新型吡啶衍生物。环加成的区域选择性从丙烯酸甲酯反转为丙烯酸叔丁酯。新化合物的结构解析是在光谱和 X 射线分析的基础上进行的。© 2005 Wiley Periodicals, Inc. 杂原子化学 16:49–55, 2005; 在线发表于 Wiley InterScience (www.interscience.wiley.com)。DOI 10.1002/hc.20064
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-(+)-2,2'',6,6''-四甲氧基-4,4''-双(二苯基膦基)-3,3''-联吡啶(1,5-环辛二烯)铑(I)四氟硼酸盐 (R)-N'-亚硝基尼古丁 (R)-DRF053二盐酸盐 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S,2'S)-(-)-[N,N'-双(2-吡啶基甲基]-2,2'-联吡咯烷双(乙腈)铁(II)六氟锑酸盐 (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 (1'R,2'S)-尼古丁1,1'-Di-N-氧化物 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸氯苯那敏-D6 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 韦德伊斯试剂 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非布索坦杂质66 非尼拉朵 非尼拉敏 雷索替丁 阿雷地平 阿瑞洛莫 阿扎那韦中间体 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 镉,二碘四(4-甲基吡啶)- 锌,二溴二[4-吡啶羧硫代酸(2-吡啶基亚甲基)酰肼]-