摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(35)Cl-deuterium chloride | 14986-26-6

中文名称
——
中文别名
——
英文名称
(35)Cl-deuterium chloride
英文别名
hydrogen chloride
(35)Cl-deuterium chloride化学式
CAS
14986-26-6
化学式
ClH
mdl
——
分子量
37.0
InChiKey
VEXZGXHMUGYJMC-MCXKOXQDSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.8
  • 重原子数:
    1
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    1
  • 氢受体数:
    0

反应信息

  • 作为反应物:
    描述:
    氮气-15N2(35)Cl-deuterium chloride 以 neat (no solvent, gas phase) 为溶剂, 生成
    参考文献:
    名称:
    15 N 2 …DCl旋转光谱中的Cl和D核四极杆耦合以及DCl亚基的动力学
    摘要:
    已经确定了线性四聚体15 N 2 …D 35 Cl和15 N 2 …D 37 Cl的核四极偶合常数χ(Cl)和χ(D)以及旋转常数B 0和离心畸变常数D j。通过使用简单的静电模型,对由于存在N 2亚基而对15 N 2 …H(D)Cl的χ(Cl)进行了电效应校正,并针对H(D)讨论了校正值Cl亚基动力学。
    DOI:
    10.1016/0009-2614(88)80348-8
点击查看最新优质反应信息

文献信息

  • Infrared Spectra of the HAnX and H<sub>2</sub> AnX<sub>2</sub> Molecules (An=Th and U, X=Cl and Br) in Argon Matrices Supported by Electronic Structure Calculations
    作者:Lin Li、Tony Stüker、Lester Andrews、Helmut Beckers、Sebastian Riedel
    DOI:10.1002/chem.201805372
    日期:2019.2.1
    for ligand stabilized complexes and as isolated molecules under matrix isolation conditions. Here, the new molecular products of the reactions of laser‐ablated U and Th atoms with HCl and with HBr, namely HUCl, HUBr and HThCl, HThBr, based on their mid and far infrared spectra in solid argon, are reported. The assignment of these species is based on the close agreement between observed and calculated
    氢化铀和or被称为配体稳定的复合物的官能团,在基质分离条件下为分离的分子。在此,根据固体氩气的中红外和远红外光谱,报道了激光烧蚀的U和Th原子与HCl和HBr反应的新分子产物,即HUCl,HUBr和HThCl,HThBr。这些种类的分配基于观察到的和计算出的振动频率之间的紧密一致。在1404.6和323.8 cm -1处分别观察到HUCl的H-U和U- 35 Cl拉伸模式。代替地,使用DC1形成DUC1在1003.1和314.7cm -1处给出吸收带。HThCl的对应谱带为1483.8(H-Th)和1058.0(D-Th),以及分别为340.3和335.8 cm -1(Th- 35 Cl)。在1410.6cm -1处观察到HUBr,并且从HUC1算出的BP86位移为6.2cm -1,具有极好的一致性。由于较少的带负电性的取代基从U键中去除的电荷较少,因此UH的拉伸频率从1383.1(HUF),1404
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Cl: SVol.B1, 76, page 202 - 204
    作者:
    DOI:——
    日期:——
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Cl: SVol.A, 47, page 84 - 87
    作者:
    DOI:——
    日期:——
  • Clusius, K., Helvetica Chimica Acta, 1961, vol. 44, p. 1349 - 1356
    作者:Clusius, K.
    DOI:——
    日期:——
  • Infrared absorption spectroscopy of CO<sub>2</sub>–HX complexes using the CO<sub>2</sub> asymmetric stretch chromophore: CO<sub>2</sub>HF(DF) and CO<sub>2</sub>HCl(DCl) linear and CO<sub>2</sub>HBr bent equilibrium geometries
    作者:S. W. Sharpe、Y. P. Zeng、C. Wittig、R. A. Beaudet
    DOI:10.1063/1.458077
    日期:1990.1.15
    Infrared absorption spectra associated with the CO2 asymmetric stretch vibration have been recorded for weakly bonded gas-phase complexes of CO2 with HF, DF, HCl, DCl, and HBr, using tunable diode laser spectroscopy and a pulsed slit expansion (0.15×38 mm2) that provides &gt;20 MHz overall resolution. Results obtained with CO2–HF are in agreement with earlier studies, in which the HF-stretch region near 3900 cm−1 was examined. In both cases, broad linewidths suggest subnanosecond predissociation. With CO2–DF, the natural linewidths are markedly narrower than with CO2–HF (e.g., 28 vs 182 MHz), and this difference is attributed to slower predissociation, possibly implicating resonances in the case of CO2–HF. Both CO2–HF and CO2–DF exhibited overlapping features: simple P and R branches associated with a linear rotor, and P and R branches containing doublets. As in earlier studies, the second feature can be assigned to either a slightly asymmetric rotor with Ka=1, or a hot band involving a low-frequency intermolecular bend mode. Results obtained with CO2–HCl are in excellent agreement with earlier microwave measurements on the ground vibrational state, and the vibrationally excited state is almost identical to the lower state. Like CO2–DF, linewidths of CO2–HCl and CO2–DCl are much sharper than those of CO2–HF, and in addition, CO2–HCl and CO2–DCl exhibited weak hot bands, as were also evident with CO2–HF and CO2–DF. Upon forming complexes with either HF or HCl, the asymmetric stretch mode of CO2 underwent a blue shift relative to uncomplexed CO2. This can be understood in terms of the nature of the hydrogen bonds, and ab initio calculations are surprisingly good at predicting these shifts. Deuteration of both HF and HCl resulted in further blue shifts of the band origins. These additional shifts are attributed to stronger intermolecular interactions, i.e., deuteration lowers the zero-point energy, and in a highly anharmonic field this results in a more compact average structure. While both HF and HCl complexes exhibit nearly linear geometries,CO2–HBr is asymmetric, with the Br–C symmetry line essentially perpendicular to the CO2 axis, and the H atom probably localized near one of the oxygens. Although the moments of inertia are insensitive to the location of the H atom in CO2–HBr, Bose–Einstein statistics require that odd K″a states are missing for C2v symmetry, as is observed with T-shaped CO2–(rare gas) complexes. However, we observe a full complement of odd and even Ka states, indicating that the H atom is not located symmetrically about the C2v axis on the time scale of the measurement. With CO2–HBr, the low gas-phase acidity of HBr and the high Br-atom polarizability encourage a qualitative change in the geometry relative to CO2–HCl and CO2–HF. This has valuable implications for photoinitiated reactions in such complexes.
查看更多