摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,6-dinonylpyridine | 33354-90-4

中文名称
——
中文别名
——
英文名称
2,6-dinonylpyridine
英文别名
2,6-dinonyl-pyridine;2,6-Di(nonyl)pyridine
2,6-dinonylpyridine化学式
CAS
33354-90-4
化学式
C23H41N
mdl
——
分子量
331.585
InChiKey
CSJSVZHTJRQNMG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    9.7
  • 重原子数:
    24
  • 可旋转键数:
    16
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.78
  • 拓扑面积:
    12.9
  • 氢给体数:
    0
  • 氢受体数:
    1

反应信息

  • 作为反应物:
    描述:
    2,6-dinonylpyridine三氟甲烷磺酸甲酯二氯甲烷 为溶剂, 以65%的产率得到2,6-dinonyl-1-methylpyridinium trifluoromethanesulfonate
    参考文献:
    名称:
    Structure–Affinity Relationships (SARs) and Structure–Kinetics Relationships (SKRs) of Kv11.1 Blockers
    摘要:
    K(v)11.1 (hERG) blockers with comparable potencies but different binding kinetics might display divergent proarrhythmic risks. In the present study, we explored structure-kinetics relationships in four series of K(v)11.1 blockers next to their structure affinity relationships. We learned that despite dramatic differences in affinities and association rates, there were hardly any variations in the dissociation rate constants of these molecules with residence times (RTs) of a few minutes only. Hence, we synthesized 16 novel molecules, in particular in the pyridinium class of compounds, to further address this peculiar phenomenon. We found molecules with very short RTs (e.g., 0.34 min for 37) and much longer RTs (e.g., 105 min for 38). This enabled us to construct a k(on)-k(off)-K-D kinetic map for all compounds and subsequently divide the map into four provisional quadrants, providing a possible framework for a further and more precise categorization of K(v)11.1 blockers. Additionally, two representative compounds (21 and 38) were tested in patch clamp assays, and their RTs were linked to their functional IC50 values. Our findings strongly suggest the importance of the simultaneous study of ligand affinities and kinetic parameters, which may help to explain and predict K(v)11.1-mediated cardiotoxicity.
    DOI:
    10.1021/acs.jmedchem.5b00518
  • 作为产物:
    描述:
    2,6-二溴吡啶 在 bis-triphenylphosphine-palladium(II) chloride 、 copper(l) iodide 、 palladium 10% on activated carbon 、 氢气三乙胺 作用下, 以 四氢呋喃甲醇 为溶剂, 生成 2,6-dinonylpyridine
    参考文献:
    名称:
    Structure–Affinity Relationships (SARs) and Structure–Kinetics Relationships (SKRs) of Kv11.1 Blockers
    摘要:
    K(v)11.1 (hERG) blockers with comparable potencies but different binding kinetics might display divergent proarrhythmic risks. In the present study, we explored structure-kinetics relationships in four series of K(v)11.1 blockers next to their structure affinity relationships. We learned that despite dramatic differences in affinities and association rates, there were hardly any variations in the dissociation rate constants of these molecules with residence times (RTs) of a few minutes only. Hence, we synthesized 16 novel molecules, in particular in the pyridinium class of compounds, to further address this peculiar phenomenon. We found molecules with very short RTs (e.g., 0.34 min for 37) and much longer RTs (e.g., 105 min for 38). This enabled us to construct a k(on)-k(off)-K-D kinetic map for all compounds and subsequently divide the map into four provisional quadrants, providing a possible framework for a further and more precise categorization of K(v)11.1 blockers. Additionally, two representative compounds (21 and 38) were tested in patch clamp assays, and their RTs were linked to their functional IC50 values. Our findings strongly suggest the importance of the simultaneous study of ligand affinities and kinetic parameters, which may help to explain and predict K(v)11.1-mediated cardiotoxicity.
    DOI:
    10.1021/acs.jmedchem.5b00518
点击查看最新优质反应信息

文献信息

  • Deacylation of amides
    申请人:BIOCHEMIE Gesellschaft m.b.H.
    公开号:EP0108034A2
    公开(公告)日:1984-05-09
    57 Deacytation of Amides by the iminohatide iminoether process using long-chain bases.
    57 通过使用长链碱的亚氨基醚亚氨基醚工艺进行酰胺的脱乙酰化。
  • US4562253A
    申请人:——
    公开号:US4562253A
    公开(公告)日:1985-12-31
  • Structure–Affinity Relationships (SARs) and Structure–Kinetics Relationships (SKRs) of K<sub>v</sub>11.1 Blockers
    作者:Zhiyi Yu、Jacobus P. D. van Veldhoven、Julien Louvel、Ingrid M. E. ’t Hart、Martin B. Rook、Marcel A. G. van der Heyden、Laura H. Heitman、Adriaan P. IJzerman
    DOI:10.1021/acs.jmedchem.5b00518
    日期:2015.8.13
    K(v)11.1 (hERG) blockers with comparable potencies but different binding kinetics might display divergent proarrhythmic risks. In the present study, we explored structure-kinetics relationships in four series of K(v)11.1 blockers next to their structure affinity relationships. We learned that despite dramatic differences in affinities and association rates, there were hardly any variations in the dissociation rate constants of these molecules with residence times (RTs) of a few minutes only. Hence, we synthesized 16 novel molecules, in particular in the pyridinium class of compounds, to further address this peculiar phenomenon. We found molecules with very short RTs (e.g., 0.34 min for 37) and much longer RTs (e.g., 105 min for 38). This enabled us to construct a k(on)-k(off)-K-D kinetic map for all compounds and subsequently divide the map into four provisional quadrants, providing a possible framework for a further and more precise categorization of K(v)11.1 blockers. Additionally, two representative compounds (21 and 38) were tested in patch clamp assays, and their RTs were linked to their functional IC50 values. Our findings strongly suggest the importance of the simultaneous study of ligand affinities and kinetic parameters, which may help to explain and predict K(v)11.1-mediated cardiotoxicity.
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-N'-亚硝基尼古丁 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非尼拉朵 非尼拉敏 阿雷地平 阿瑞洛莫 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 锇二(2,2'-联吡啶)氯化物 链黑霉素 链黑菌素 银杏酮盐酸盐 铬二烟酸盐 铝三烟酸盐 铜-缩氨基硫脲络合物 铜(2+)乙酸酯吡啶(1:2:1) 铁5-甲氧基-6-甲基-1-氧代-2-吡啶酮 钾4-氨基-3,6-二氯-2-吡啶羧酸酯 钯,二氯双(3-氯吡啶-κN)-,(SP-4-1)-