手性氟化胺的对映选择性合成在合成化学和制药工业中非常重要,但也极具挑战性。在此,我们建立了化学酶级联,通过有机酶脱羧氟化和双酶催化两个催化模块,在水-油-固体多相体系中从容易获得的β-酮酸酯对映选择性合成手性α-单胺和二氟甲基胺。还原胺化。通过分步酶固定化、双相系统构建和连续流操作,构建高效的连续合成系统,实现工艺强化。该流动系统实现了高达 19.7 g L –1 h –1的高时空产率与使用游离酶的批次系统相比,提高了 35 倍,并且还表现出较高的操作稳定性,96 小时后仍保持 87% 的生产活性,半衰期为 443.9 小时。
inversion protocol starting with enantioenriched 1-aryl-2-fluoroethanols using phthalimide as nucleophile was employed in the synthesis of the (S)-1-aryl-2-fluoroethylamines. Both the inversion efficiency and yield depended on the aromatic substituents. For six of the substrates, clean inversion of the stereochemistry was observed. However, racemisation and low yields were the result when electron-donating
industrial biocatalysis and enable the preparation of optically pure amines. For these transformations they require either an amine donor (amination of ketones) or an amine acceptor (deamination of racemic amines). Herein transaminases are shown to react with aromatic β‐fluoroamines, thus leading to simultaneous enantioselective dehalogenation and deamination to form the corresponding acetophenone
The synthesis of chiral amines is of central importance to pharmaceutical chemistry, and the inclusion of fluorine atoms in drug molecules can both increase potency and slow metabolism. Optically enriched β‐fluoroamines can be obtained by the kinetic resolution of racemic amines using amine transaminases (ATAs), but yields are limited to 50 %, and also secondary amines are not accessible. In order
The enantioselectivesynthesis of chiral fluorinated amines is of great importance but highly challenging in synthetic chemistry and the pharmaceutical industry. Herein, we established a chemoenzymatic cascade for enantioselectivesynthesis of chiral α-mono- and difluoromethyl amines from easily available β-keto-acid esters in water–oil–solid multiphasic systems via two catalytic modules, i.e., organo-enzymatic
手性氟化胺的对映选择性合成在合成化学和制药工业中非常重要,但也极具挑战性。在此,我们建立了化学酶级联,通过有机酶脱羧氟化和双酶催化两个催化模块,在水-油-固体多相体系中从容易获得的β-酮酸酯对映选择性合成手性α-单胺和二氟甲基胺。还原胺化。通过分步酶固定化、双相系统构建和连续流操作,构建高效的连续合成系统,实现工艺强化。该流动系统实现了高达 19.7 g L –1 h –1的高时空产率与使用游离酶的批次系统相比,提高了 35 倍,并且还表现出较高的操作稳定性,96 小时后仍保持 87% 的生产活性,半衰期为 443.9 小时。