Exploration of the nicotinamide-binding site of the tankyrases, identifying 3-arylisoquinolin-1-ones as potent and selective inhibitors in vitro
摘要:
Tankyrases-1 and -2 (TNKS-1 and TNKS-2) have three cellular roles which make them important targets in cancer. Using NAD+ as a substrate, they poly(ADP-ribosyl) ate TRF1 (regulating lengths of telomeres), NuMA (facilitating mitosis) and axin (in wnt/beta-catenin signalling). Using molecular modelling and the structure of the weak inhibitor 5-aminoiso quinolin-1-one, 3-aryl-5-substituted-isoquinolin-1-ones were designed as inhibitors to explore the structure-activity relationships (SARs) for binding and to define the shape of a hydrophobic cavity in the active site. 5-Amino-3-arylisoquinolinones were synthesised by Suzuki-Miyaura coupling of arylboronic acids to 3-bromo-1-methoxy-5-nitro-isoquinoline, reduction and O-demethylation. 3-Aryl-5-methylisoquinolin-1-ones, 3-aryl-5-fluoroisoquinolin-1-ones and 3-aryl-5-methoxyisoquinolin-1-ones were accessed by deprotonation of 3-substituted-N,N,2-trimethylbenzamides and quench with an appropriate benzonitrile. SAR around the isoquinolinone core showed that aryl was required at the 3-position, optimally with a para-substituent. Small meta-substituents were tolerated but groups in the ortho-positions reduced or abolished activity. This was not due to lack of coplanarity of the rings, as shown by the potency of 4,5-dimethyl-3-phenylisoquinolin-1-one. Methyl and methoxy were optimal at the 5-position. SAR was rationalised by modelling and by crystal structures of examples with TNKS-2. The 3-aryl unit was located in a large hydrophobic cavity and the para-substituents projected into a tunnel leading to the exterior. Potency against TNKS-1 paralleled potency against TNKS-2. Most inhibitors were highly selective for TNKSs over PARP-1 and PARP-2. A range of highly potent and selective inhibitors is now available for cellular studies. (C) 2015 Elsevier Ltd. All rights reserved.
One-pot tandem Hurtley–retro-Claisen–cyclisation reactions in the synthesis of 3-substituted analogues of 5-aminoisoquinolin-1-one (5-AIQ), a water-soluble inhibitor of PARPs
作者:Esther C.Y. Woon、Peter T. Sunderland、Helen A. Paine、Matthew D. Lloyd、Andrew S. Thompson、Michael D. Threadgill
DOI:10.1016/j.bmc.2013.06.031
日期:2013.9
Poly(ADP-ribose)polymerase-1 (PARP-1) is an important target for drug design for several therapeutic applications. 5-Aminoisoquinolin-1-one (5-AIQ) is a highly water-soluble lead compound; synthetic routes to 3-substituted analogues were explored. Tandem Hurtley coupling of beta-diketones with 2-bromo-3-nitrobenzoic acid, retro-Claisen acyl cleavage and cyclisation gave the corresponding 3-substituted 5-nitroisocoumarins. Treatment with ammonia at high temperature and reduction with tin(II) chloride gave eleven target 3-substituted 5-AIQs, which were all soluble in water (>1% w/ v) as their HCl salts. Most were more potent than 5-AIQ as inhibitors of PARP-1 and of PARP-2 in vitro, the most active being 5-amino-3-methylisoquinolin-1-one (PARP-1: IC50 = 0.23 mu M vs IC50 = 1.6 mu M for 5-AIQ). Some rationalisation of the SAR was achieved through molecular modelling. (C) 2013 Elsevier Ltd. All rights reserved.