摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-Methyl-2-trimethylsilanyl-acrylamide | 153035-26-8

中文名称
——
中文别名
——
英文名称
N-Methyl-2-trimethylsilanyl-acrylamide
英文别名
N-methyl-2-trimethylsilylprop-2-enamide
N-Methyl-2-trimethylsilanyl-acrylamide化学式
CAS
153035-26-8
化学式
C7H15NOSi
mdl
——
分子量
157.288
InChiKey
CSAKCKDFYHRJKT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.17
  • 重原子数:
    10
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.57
  • 拓扑面积:
    29.1
  • 氢给体数:
    1
  • 氢受体数:
    1

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Charge-directed conjugate addition reactions of silylated .alpha.,.beta.-unsaturated amidate anions
    摘要:
    A variety of N-substituted alpha-silylated-alpha,beta-unsaturated amidate anions (2) have been found to be excellent Michael acceptors in charge-directed conjugate addition reactions with Grignard and organolithium reagents. The effects of olefin substitution, Si-substitution, N-substitution, and amidate counterion have been studied. Anionic acceptors may be prepared in situ by the addition of silylated vinyllithium reagents to isocyanates and then allowed to undergo conjugate addition reactions with subsequently added nucleophiles, but it was found to be more efficient to isolate neutral acceptors and regenerate the acceptor anion through the use of excess nucleophile. Beta-Substituted acceptors were found to react only with reactive organolithium reagents while a beta,beta-disubstituted acceptor failed to undergo conjugate addition reactions. A primary amide acceptor (14d) also undergoes addition reactions with larger quantitites of nucleophiles suggesting that dianionic amidate acceptors (31) are involved. Diene acceptor 24 was found to undergo a 1,6-addition reaction with n-BuLi. Sodium and potassium amidate salts were found to be inferior to lithium and magnesium salts in addition reactions in keeping with the expectation that an increase in carbonyl-group charge burden retards conjugate reactions. Triphenylsilyl-containing acceptor 16 was found to be more reactive in reactions with n-BuMgCl but less reactive with bulkier tert-BuMgCl. Adduct dianions can be monoalkylated with alkyl iodides and used in Peterson olefination reactions.
    DOI:
    10.1021/jo00078a028
  • 作为产物:
    描述:
    [1-(trimethylsilyl)vinyl]magnesium bromide 、 异氰酸甲酯四氢呋喃 为溶剂, 以63%的产率得到N-Methyl-2-trimethylsilanyl-acrylamide
    参考文献:
    名称:
    Charge-directed conjugate addition reactions of silylated .alpha.,.beta.-unsaturated amidate anions
    摘要:
    A variety of N-substituted alpha-silylated-alpha,beta-unsaturated amidate anions (2) have been found to be excellent Michael acceptors in charge-directed conjugate addition reactions with Grignard and organolithium reagents. The effects of olefin substitution, Si-substitution, N-substitution, and amidate counterion have been studied. Anionic acceptors may be prepared in situ by the addition of silylated vinyllithium reagents to isocyanates and then allowed to undergo conjugate addition reactions with subsequently added nucleophiles, but it was found to be more efficient to isolate neutral acceptors and regenerate the acceptor anion through the use of excess nucleophile. Beta-Substituted acceptors were found to react only with reactive organolithium reagents while a beta,beta-disubstituted acceptor failed to undergo conjugate addition reactions. A primary amide acceptor (14d) also undergoes addition reactions with larger quantitites of nucleophiles suggesting that dianionic amidate acceptors (31) are involved. Diene acceptor 24 was found to undergo a 1,6-addition reaction with n-BuLi. Sodium and potassium amidate salts were found to be inferior to lithium and magnesium salts in addition reactions in keeping with the expectation that an increase in carbonyl-group charge burden retards conjugate reactions. Triphenylsilyl-containing acceptor 16 was found to be more reactive in reactions with n-BuMgCl but less reactive with bulkier tert-BuMgCl. Adduct dianions can be monoalkylated with alkyl iodides and used in Peterson olefination reactions.
    DOI:
    10.1021/jo00078a028
点击查看最新优质反应信息

文献信息

  • Charge-directed conjugate addition reactions of silylated .alpha.,.beta.-unsaturated amidate anions
    作者:Manning P. Cooke、Charles M. Pollock
    DOI:10.1021/jo00078a028
    日期:1993.12
    A variety of N-substituted alpha-silylated-alpha,beta-unsaturated amidate anions (2) have been found to be excellent Michael acceptors in charge-directed conjugate addition reactions with Grignard and organolithium reagents. The effects of olefin substitution, Si-substitution, N-substitution, and amidate counterion have been studied. Anionic acceptors may be prepared in situ by the addition of silylated vinyllithium reagents to isocyanates and then allowed to undergo conjugate addition reactions with subsequently added nucleophiles, but it was found to be more efficient to isolate neutral acceptors and regenerate the acceptor anion through the use of excess nucleophile. Beta-Substituted acceptors were found to react only with reactive organolithium reagents while a beta,beta-disubstituted acceptor failed to undergo conjugate addition reactions. A primary amide acceptor (14d) also undergoes addition reactions with larger quantitites of nucleophiles suggesting that dianionic amidate acceptors (31) are involved. Diene acceptor 24 was found to undergo a 1,6-addition reaction with n-BuLi. Sodium and potassium amidate salts were found to be inferior to lithium and magnesium salts in addition reactions in keeping with the expectation that an increase in carbonyl-group charge burden retards conjugate reactions. Triphenylsilyl-containing acceptor 16 was found to be more reactive in reactions with n-BuMgCl but less reactive with bulkier tert-BuMgCl. Adduct dianions can be monoalkylated with alkyl iodides and used in Peterson olefination reactions.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物