摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,3-bis(2-(tert-butoxycarbonylamino)ethyl)-2-methylguanidinium iodide | 1309582-99-7

中文名称
——
中文别名
——
英文名称
1,3-bis(2-(tert-butoxycarbonylamino)ethyl)-2-methylguanidinium iodide
英文别名
tert-butyl N-[2-[[N'-methyl-N-[2-[(2-methylpropan-2-yl)oxycarbonylamino]ethyl]carbamimidoyl]amino]ethyl]carbamate;hydroiodide
1,3-bis(2-(tert-butoxycarbonylamino)ethyl)-2-methylguanidinium iodide化学式
CAS
1309582-99-7
化学式
C16H33N5O4*HI
mdl
——
分子量
487.382
InChiKey
PCSIDMUHPWCKJF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.82
  • 重原子数:
    26
  • 可旋转键数:
    12
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.81
  • 拓扑面积:
    113
  • 氢给体数:
    5
  • 氢受体数:
    5

反应信息

  • 作为反应物:
    描述:
    1,3-bis(2-(tert-butoxycarbonylamino)ethyl)-2-methylguanidinium iodide三氟乙酸盐酸 作用下, 以 乙醇 为溶剂, 反应 2.0h, 以59%的产率得到1,3-bis(2-aminoethyl)-2-methylguanidine trihydrochloride
    参考文献:
    名称:
    Structure–Activity Examination of Poly(glycoamidoguanidine)s: Glycopolycations Containing Guanidine Units for Nucleic Acid Delivery
    摘要:
    In this study we synthesized a new series of polymers known as poly(glycoamidoguanidine)s (PGAGs). These new polymer structures were synthesized by copolymerizing a carbohydrate monomer (diester; galatarate or tartarate) with a diamine incorporating guanidine or methylguanidine as a charge center to create a polyamide backbone. These materials were strategically designed and compared to our previously studied DNA delivery vehicles, poly(glycoamidoamine)s (PGAAs), which contain secondary amines as the charge groups along the polymer backbone to examine the effect of charge center type on the cellular delivery efficiency of plasmid DNA (pDNA). The guanidine moieties within the PGAGs facilitate electrostatic binding with the negatively charged phosphate backbone of plasmid DNA (pDNA). Stable polymer pDNA complexes (polyplexes) with sizes in the range of 60-200 nut are formed at polymer/pDNA charge ratios (NIP) of 5 and above. When the PGAGs are complexed with Cy5-labeled pDNA (Cy5-pDNA) at N/P ratios of 10 and 25, between 80 and 95% of HeLa cells were positive for Cy5 fluorescence, indicating effective cellular internalization of the polyplexes. The toxicity of both PGAA and PGAG polyplexes was studied via MTT assays, and over 95% cell survival was observed at N/P ratios of 5,10, 15, 20, 25, and 30 in HeLa cells. Transgene expression was examined via luciferase assays at various NIP ratios in the absence and presence of serum. In the absence of serum, the PGAG polyplexes revealed similar transgene expression when compared to polyplexes formed with their analogous PGAA structures. In the presence of serum, one analog (Gg) consisting of galactarate copolymerized with the guanidine monomer yielded gene expression similar to the positive control, Glycofect Transfection Reagent. This new series of guanidine-containing oligomers are promising as a new design strategy to incorporate an alternative charge center type within the backbone of glycopolymer-based nucleic acid delivery vehicles.
    DOI:
    10.1021/bm101537f
  • 作为产物:
    参考文献:
    名称:
    Structure–Activity Examination of Poly(glycoamidoguanidine)s: Glycopolycations Containing Guanidine Units for Nucleic Acid Delivery
    摘要:
    In this study we synthesized a new series of polymers known as poly(glycoamidoguanidine)s (PGAGs). These new polymer structures were synthesized by copolymerizing a carbohydrate monomer (diester; galatarate or tartarate) with a diamine incorporating guanidine or methylguanidine as a charge center to create a polyamide backbone. These materials were strategically designed and compared to our previously studied DNA delivery vehicles, poly(glycoamidoamine)s (PGAAs), which contain secondary amines as the charge groups along the polymer backbone to examine the effect of charge center type on the cellular delivery efficiency of plasmid DNA (pDNA). The guanidine moieties within the PGAGs facilitate electrostatic binding with the negatively charged phosphate backbone of plasmid DNA (pDNA). Stable polymer pDNA complexes (polyplexes) with sizes in the range of 60-200 nut are formed at polymer/pDNA charge ratios (NIP) of 5 and above. When the PGAGs are complexed with Cy5-labeled pDNA (Cy5-pDNA) at N/P ratios of 10 and 25, between 80 and 95% of HeLa cells were positive for Cy5 fluorescence, indicating effective cellular internalization of the polyplexes. The toxicity of both PGAA and PGAG polyplexes was studied via MTT assays, and over 95% cell survival was observed at N/P ratios of 5,10, 15, 20, 25, and 30 in HeLa cells. Transgene expression was examined via luciferase assays at various NIP ratios in the absence and presence of serum. In the absence of serum, the PGAG polyplexes revealed similar transgene expression when compared to polyplexes formed with their analogous PGAA structures. In the presence of serum, one analog (Gg) consisting of galactarate copolymerized with the guanidine monomer yielded gene expression similar to the positive control, Glycofect Transfection Reagent. This new series of guanidine-containing oligomers are promising as a new design strategy to incorporate an alternative charge center type within the backbone of glycopolymer-based nucleic acid delivery vehicles.
    DOI:
    10.1021/bm101537f
点击查看最新优质反应信息

文献信息

  • Structure–Activity Examination of Poly(glycoamidoguanidine)s: Glycopolycations Containing Guanidine Units for Nucleic Acid Delivery
    作者:Vijay P. Taori、Hao Lu、Theresa M. Reineke
    DOI:10.1021/bm101537f
    日期:2011.6.13
    In this study we synthesized a new series of polymers known as poly(glycoamidoguanidine)s (PGAGs). These new polymer structures were synthesized by copolymerizing a carbohydrate monomer (diester; galatarate or tartarate) with a diamine incorporating guanidine or methylguanidine as a charge center to create a polyamide backbone. These materials were strategically designed and compared to our previously studied DNA delivery vehicles, poly(glycoamidoamine)s (PGAAs), which contain secondary amines as the charge groups along the polymer backbone to examine the effect of charge center type on the cellular delivery efficiency of plasmid DNA (pDNA). The guanidine moieties within the PGAGs facilitate electrostatic binding with the negatively charged phosphate backbone of plasmid DNA (pDNA). Stable polymer pDNA complexes (polyplexes) with sizes in the range of 60-200 nut are formed at polymer/pDNA charge ratios (NIP) of 5 and above. When the PGAGs are complexed with Cy5-labeled pDNA (Cy5-pDNA) at N/P ratios of 10 and 25, between 80 and 95% of HeLa cells were positive for Cy5 fluorescence, indicating effective cellular internalization of the polyplexes. The toxicity of both PGAA and PGAG polyplexes was studied via MTT assays, and over 95% cell survival was observed at N/P ratios of 5,10, 15, 20, 25, and 30 in HeLa cells. Transgene expression was examined via luciferase assays at various NIP ratios in the absence and presence of serum. In the absence of serum, the PGAG polyplexes revealed similar transgene expression when compared to polyplexes formed with their analogous PGAA structures. In the presence of serum, one analog (Gg) consisting of galactarate copolymerized with the guanidine monomer yielded gene expression similar to the positive control, Glycofect Transfection Reagent. This new series of guanidine-containing oligomers are promising as a new design strategy to incorporate an alternative charge center type within the backbone of glycopolymer-based nucleic acid delivery vehicles.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物