摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-甲基-4-苯基吡啶 | 15032-21-0

中文名称
2-甲基-4-苯基吡啶
中文别名
——
英文名称
2-methyl-4-phenylpyridine
英文别名
2-Methyl-4-phenyl-pyridin;4-Phenyl-2-picolin
2-甲基-4-苯基吡啶化学式
CAS
15032-21-0
化学式
C12H11N
mdl
MFCD04114154
分子量
169.226
InChiKey
CRWNQZTZTZWPOF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.9
  • 重原子数:
    13
  • 可旋转键数:
    1
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.083
  • 拓扑面积:
    12.9
  • 氢给体数:
    0
  • 氢受体数:
    1

安全信息

  • 海关编码:
    2933399090

SDS

SDS:877a614a0a26e35e1d2c0fcd1ab74559
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-甲基-4-苯基吡啶盐酸双氧水乙酸酐溶剂黄146 作用下, 反应 4.5h, 生成 (4-苯基吡啶-2-基)甲醇
    参考文献:
    名称:
    2-[((苯硫基)甲基]吡啶衍生物:新型抗炎药。
    摘要:
    2-[((苯硫基)甲基]吡啶衍生物可抑制大鼠皮肤逆向被动Arthus反应(RPAR)。在同一模型中,消炎痛是无活性的,氢化可的松是有活性的。化合物Ia-d还显着减少了胸膜RPAR中的渗出液量和白细胞积聚。这种活性模式与氢化可的松相似,与消炎痛不同。
    DOI:
    10.1021/jm00356a018
  • 作为产物:
    描述:
    4-苯基吡啶乙醚二氯甲烷 为溶剂, 反应 0.25h, 生成 2-甲基-4-苯基吡啶
    参考文献:
    名称:
    直接合成4,4-二取代的N-甲硅烷基-1,4-二氢吡啶
    摘要:
    提出了制备4,4-二取代的1,4-二氢吡啶的空前的方法。它基于4-取代的N-甲硅烷基吡啶鎓离子的捕集反应。当与二烷基镁试剂,如执行我镨2的Mg,甲硅烷基保护4,4-二取代的高达定量的产率得到1,4-二氢吡啶。发现对空间要求高的亲核试剂具有较高的1,4-选择性,而小的亲核试剂(Me 2 Mg)倾向于产生1,2-加成产物。发现格氏试剂,二烷基锌和有机铜试剂没有产生加成产物或产生较差的结果。在HCl存在下,用NaCNBH 3还原获得的1,4-二氢吡啶,然后用二碳酸叔丁酯以高收率提供了相应的N- Boc保护的哌啶。
    DOI:
    10.1016/j.tet.2005.11.069
点击查看最新优质反应信息

文献信息

  • Inhibitors of protein kinases
    申请人:Zeitlmann Lutz
    公开号:US20110224225A1
    公开(公告)日:2011-09-15
    Compounds of general Formula (I): wherein R 1 , R 2 , R 3 , R a , A, B and x are as defined herein are inhibitors of protein kinases in particular members of the cyclin-dependent kinase family and/or the glycogen synthase kinase 3 family and are useful in preventing and/or treating any type of pain, inflammatory disorders, cancer, immunological diseases, proliferative diseases, infectious diseases, cardiovascular diseases, metabolic disorders, renal diseases, neurologic and neuropsychiatric diseases and neurodegenerative diseases.
    通用式(I)的化合物: 其中R1、R2、R3、Ra、A、B和x的定义如本文所述,是特定于细胞周期蛋白激酶家族和/或糖原合成酶激酶3家族的抑制剂,并且在预防和/或治疗任何类型的疼痛、炎症性疾病、癌症、免疫性疾病、增殖性疾病、传染病、心血管疾病、代谢性疾病、肾脏疾病、神经和神经精神疾病以及神经退行性疾病方面具有用处。
  • RESIST COMPOSITION, METHOD FOR FORMING RESIST PATTERN, POLYPHENOLIC COMPOUND FOR USE IN THE COMPOSITION, AND ALCOHOLIC COMPOUND THAT CAN BE DERIVED THEREFROM
    申请人:Mitsubishi Gas Chemical Company, Inc.
    公开号:US20160145231A1
    公开(公告)日:2016-05-26
    A resist composition containing a compound represented by the general formula (1) or (2), a method for forming a resist pattern using the composition, a polyphenolic compound for use in the composition, and an alcoholic compound that can be derived therefrom are described.
    描述了一种包含由通式(1)或(2)表示的化合物的光刻胶组合物,使用该组合物形成光刻胶图案的方法,用于该组合物的多酚化合物,以及可以由其衍生的醇化合物。
  • 1-CYANO-PYRROLIDINE DERIVATIVES AS DUB INHIBITORS
    申请人:MISSION THERAPEUTICS LIMITED
    公开号:US20200331888A1
    公开(公告)日:2020-10-22
    The present invention relates to novel compounds and methods for the manufacture of inhibitors of deubiquitylating enzymes (DUBs). In particular, the invention relates to the inhibition of ubiquitin C-terminal hydrolase 30 or ubiquitin specific peptidase 30 (USP30). The novel compounds have formula (I): (Formula (I)) or are pharmaceutically acceptable salts thereof, wherein: R 1a , R 1b , R 1c , R 1d , R 1e and R 1f each independently represent hydrogen, optionally substituted C 1 -C 6 alkyl or optionally substituted C 3 -C 4 cycloalkyl, or R 1b and R 1c together form an optionally substituted C 3 -C 6 cycloalkyl ring, or R 1d and R 1e together form an optionally substituted C 3 -C 6 cycloalkyl ring; R 2 represents hydrogen or optionally substituted C 1 -C 6 alkyl; A represents an optionally further substituted 5 to 10 membered monocyclic or bicyclic heteroaryl, heterocyclyl or aryl ring; L represents a covalent bond or linker; B represents an optionally substituted 3 to 10 membered monocyclic or bicyclic heterocyclyl, heteroaryl, cycloalkyl or aryl ring; and when -A-L-B is at position x attachment to A is via a carbon ring atom of A, and either: A cannot be triazolopyridazinyl, triazolopyridinyl, imidazotriazinyl, imidazopyrazinyl or pyrrolopyrimidinyl; or B cannot be substituted with phenoxyl; or B cannot be cyclopentyl when L is an oxygen atom.
    本发明涉及新化合物和制备去泛素化酶(DUBs)抑制剂的方法。具体而言,本发明涉及抑制泛素C-末端水解酶30或泛素特异性肽酶30(USP30)。这些新化合物的化学式为(I):(化学式(I)),或其药学上可接受的盐,其中:R1a,R1b,R1c,R1d,R1e和R1f分别独立地代表氢,可选择地取代的C1-C6烷基或可选择地取代的C3-C4环烷基,或者R1b和R1c共同形成一个可选择地取代的C3-C6环烷基环,或者R1d和R1e共同形成一个可选择地取代的C3-C6环烷基环;R2代表氢或可选择地取代的C1-C6烷基;A代表一个可选择地进一步取代的5到10个成员的单环或双环杂环芳基,杂环烷基或芳基环;L代表一个共价键或连接物;B代表一个可选择地取代的3到10个成员的单环或双环杂环烷基,杂环芳基,环烷基或芳基环;当-A-L-B位于位置x时,通过A的一个碳环原子连接到A,且:A不能是三唑吡啶基,三唑吡啉基,咪唑三嗪基,咪唑吡嗪基或吡咯嘧啶基;或者B不能被苯氧基取代;或者当L是氧原子时,B不能是环戊基。
  • Alcohols as alkylating agents in heteroarene C–H functionalization
    作者:Jian Jin、David W. C. MacMillan
    DOI:10.1038/nature14885
    日期:2015.9
    The biochemical process of spin-centre shift is used to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors; this represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. A central reaction in DNA biosynthesis is ribonucleotide deoxygenation via the radical-mediated elimination of H2O, which is an example of 'spin-centre shift' (SCS), during which an alcohol C–O bond is cleaved to produce in a carbon-centred radical intermediate. Although SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. Here Jian Jin and David MacMillan show that it is possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the merger of photoredox and hydrogen atom transfer catalysis. Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of ‘spin-centre shift’2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides3,4,5,6,7, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.
    利用自旋中心转移的生化过程,通过醇作为自由基前体,可以实现温和的、非传统的烷基化反应。这在合成有机化学领域尚未得到充分应用。本文中Jin Jian和David MacMillan展示了一种方法,即利用这一自然发生的自旋中心转移过程,以醇作为自由基前体,实现温和、非传统的烷基化反应。这种方法首次实现了在广泛应用上将非活化醇作为潜在烷基化试剂,其核心是通过光氧化还原与氢原子转移催化的结合来实现。氧化还原过程和自由基中间体在很多生化过程中都存在,包括脱氧核糖核酸的合成和氧化性DNA损伤。DNA生物合成的关键原理之一就是通过自由基介导的水分子消除反应来脱氧核糖核苷酸,这也是"自旋中心转移"的一个例子。在这个过程中,醇的C-O键断裂,形成碳中心的自由基中间产物。虽然自旋中心转移是一个广为人知的生化过程,但在合成有机化学领域,这一方法尚未得到广泛应用。我们想知道是否有可能利用这个自然发生的自旋中心转移过程,以醇作为自由基前体,实现温和、非传统的烷基化反应。传统的基于自由基的烷基化方法通常需要使用化学计量的氧化剂、提高温度或使用过氧化物,因此一个使用简单且丰富的烷基化试剂的温和协议在合成多样功能化的药物分子上具有很大的应用价值。在这里,我们描述了一种使用醇作为温和烷基化试剂的双催化烷基化杂芳烃的方法。据我们所知,这代表了首次在广泛应用上将非活化醇作为潜在烷基化试剂,其成功在于实现了光氧化还原与氢原子转移催化的结合。该多催化协议的价值已通过药物分子法舒地尔和米力农的后期功能化得到展示。
  • Iridium-catalyzed C–H borylation of pyridines
    作者:Scott A. Sadler、Hazmi Tajuddin、Ibraheem A. I. Mkhalid、Andrei S. Batsanov、David Albesa-Jove、Man Sing Cheung、Aoife C. Maxwell、Lena Shukla、Bryan Roberts、David C. Blakemore、Zhenyang Lin、Todd B. Marder、Patrick G. Steel
    DOI:10.1039/c4ob01565g
    日期:——
    The iridium-catalysed C–H borylation is a valuable and attractive method for the preparation of aryl and heteroaryl boronates. However, application of this methodology for the preparation of pyridyl and related azinyl boronates can be challenged by low reactivity and propensity for rapid protodeborylation, particularly for a boronate ester ortho to the azinyl nitrogen. Competition experiments have revealed that the low reactivity is due to inhibition of the active catalyst through coordination of the azinyl nitrogen lone pair at the vacant site on the iridium. This effect can be overcome through the incorporation of a substituent at C-2. Moreover, when this is sufficiently electron-withdrawing protodeborylation is sufficiently slowed to permit isolation and purification of the C-6 boronate ester. Following functionalization, reduction of the directing C-2 substituent provides the product arising from formal ortho borylation of an unhindered pyridine ring.
    铱催化的C-H硼化是一种有价值且有吸引力的方法,用于制备芳基和杂芳基硼酸酯。然而,这种方法在制备吡啶基及相关氮杂基硼酸酯时可能面临反应活性低和快速质子脱硼化的挑战,尤其是当硼酸酯位于氮杂基氮原子的邻位时。竞争实验揭示,低反应活性是由于氮杂基氮原子的孤对电子在铱的空位上配位,抑制了活性催化剂。通过在C-2位引入取代基可以克服这一效应。此外,当该取代基足够吸电子时,质子脱硼化过程会被足够减缓,从而允许分离和纯化C-6硼酸酯。经过功能化后,导向C-2取代基的还原提供了源自未受阻吡啶环形式邻位硼化的产物。
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-N'-亚硝基尼古丁 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非尼拉朵 非尼拉敏 阿雷地平 阿瑞洛莫 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 锇二(2,2'-联吡啶)氯化物 链黑霉素 链黑菌素 银杏酮盐酸盐 铬二烟酸盐 铝三烟酸盐 铜-缩氨基硫脲络合物 铜(2+)乙酸酯吡啶(1:2:1) 铁5-甲氧基-6-甲基-1-氧代-2-吡啶酮 钾4-氨基-3,6-二氯-2-吡啶羧酸酯 钯,二氯双(3-氯吡啶-κN)-,(SP-4-1)-