Asymmetric hydrogenation of N-alkyl and N-aryl ketimines using chiral cationic Ru(diamine) complexes as catalysts: the counteranion and solvent effects, and substrate scope
作者:Fei Chen、Ziyuan Ding、Yanmei He、Jie Qin、Tianli Wang、Qing-Hua Fan
DOI:10.1016/j.tet.2012.03.019
日期:2012.7
Asymmetrichydrogenation of N-alkyl and N-aryl ketimines catalyzed by chiralcationic η6-arene-(N-monosulfonylated diamine) Ru(II) complexes has been investigated. Strong counteranion and solvent effects on the enantioselectivity were observed. The ruthenium catalyst bearing non-coordinating BArF− anion was found to be particularly effective for the hydrogenation of acyclic and exocyclic N-alkyl ketimines
Asymmetric organocatalytic reduction of ketimines with catecholborane employing a N-triflyl phosphoramide Brønsted acid as catalyst
作者:Dieter Enders、Andreas Rembiak、Matthias Seppelt
DOI:10.1016/j.tetlet.2012.11.055
日期:2013.2
The first asymmetric reduction of ketimines with catecholborane employing an enantiopure N-triflyl phosphoramide as the organocatalyst has been developed. Five mole % of the catalyst provides the corresponding secondary amines in very good to almost quantitative yields and good enantioselectivities up to 86:14 e.r. under mild reaction conditions.
<scp>l</scp>-Valine derived chiral N-sulfinamides as effective organocatalysts for the asymmetric hydrosilylation of N-alkyl and N-aryl protected ketimines
作者:Chao Wang、Xinjun Wu、Li Zhou、Jian Sun
DOI:10.1039/c4ob01257g
日期:——
L-Valine derived N-sulfinamides have been developed as efficient enantioselective Lewis basic organocatalysts for the asymmetric reduction of N-aryl and N-alkyl ketimines with trichlorosilane. Catalyst 3c afforded up to 99% yield and 96% ee in the reduction of N-alkyl ketimines and up to 98% yield and 98% ee in the reduction of N-aryl ketimines.
The influence of the alcohol, as the hydrogen donor, on the efficiency and selectivity of the asymmetrictransferhydrogenation (ATH) of imines is reported for the first time. This discovery not only leads to a highly enantioselective access to N‐aryl and N‐alkyl amines, but also provides new insight into the mechanism of the ATH of imines. Both experimental and computational studies provide support