摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

butyl 1-(2'-deoxy-3',5'-di-O-p-toluoyl-β-D-erythropentofuranosyl)-4,5-imidazoledicarboxylate | 620609-09-8

中文名称
——
中文别名
——
英文名称
butyl 1-(2'-deoxy-3',5'-di-O-p-toluoyl-β-D-erythropentofuranosyl)-4,5-imidazoledicarboxylate
英文别名
dibutyl 1-[(2R,4S,5R)-4-(4-methylbenzoyl)oxy-5-[(4-methylbenzoyl)oxymethyl]oxolan-2-yl]imidazole-4,5-dicarboxylate
butyl 1-(2'-deoxy-3',5'-di-O-p-toluoyl-β-D-erythropentofuranosyl)-4,5-imidazoledicarboxylate化学式
CAS
620609-09-8
化学式
C34H40N2O9
mdl
——
分子量
620.7
InChiKey
LTYCYVRPYGEGBW-UPRLRBBYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.9
  • 重原子数:
    45
  • 可旋转键数:
    18
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.44
  • 拓扑面积:
    132
  • 氢给体数:
    0
  • 氢受体数:
    10

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Potent Inhibition of NTPase/Helicase of the West Nile Virus by Ring-Expanded (“Fat”) Nucleoside Analogues
    摘要:
    A series of ring-expanded ("fat") nucleoside analogues (RENs) containing the 6-aminoimidazo-[4,5-e] [1,3]diazepine-4,8-dione ring system have been synthesized and screened for inhibition of NTPase/helicase of the West Nile Virus (WNV). To assess the selectivity of RENs against the viral enzymes, a truncated form of human enzyme Suv3((Delta1-159)) was also included in the study. Ring-expanded nucleosides 16, 17, and 19, which possess the long C-12, C-14, and C-18 side-chains, respectively, at position 6, as well as the ring-expanded heterocycle 39, which contains aralkyl substitution at position 1, were all found to have excellent profiles of activity and selectivity toward the viral versus human enzymes against the West Nile Virus (IC50 ranging 1-10 muM). Compound 30, while being an equally potent inhibitor of WNV, was found to be somewhat less selective, whereas compound 36, which is an alpha-anomeric counterpart of 30, exhibited potent and selective inhibition of WN-V (IC50 1-3 muM). The same compounds that showed potent inhibition of viral helicase activity completely failed to show any activity against the viral NTPase reaction even up to 500 muM. However, at concentrations >500 muM of RENs and the ATP concentrations >10 times the K-m value of the enzyme, a significant activation of NTPase activity was observed. This activating effect underwent further dramatic enhancement (>1000%) by further increases in ATP concentration in the reaction mixture, suggesting that the viral helicase and NTPase reactions are not coupled. A tentative mechanistic model has been proposed to explain the observed results.
    DOI:
    10.1021/jm030277k
  • 作为产物:
    描述:
    1-Α-氯-3,5-二-O-对甲苯甲酰基-2-脱氧-D-呋喃核糖dibutyl 1H-imidazole-4,5-dicarboxylate 在 sodium hydride 作用下, 以 乙腈 为溶剂, 反应 3.0h, 以95%的产率得到butyl 1-(2'-deoxy-3',5'-di-O-p-toluoyl-β-D-erythropentofuranosyl)-4,5-imidazoledicarboxylate
    参考文献:
    名称:
    Potent Inhibition of NTPase/Helicase of the West Nile Virus by Ring-Expanded (“Fat”) Nucleoside Analogues
    摘要:
    A series of ring-expanded ("fat") nucleoside analogues (RENs) containing the 6-aminoimidazo-[4,5-e] [1,3]diazepine-4,8-dione ring system have been synthesized and screened for inhibition of NTPase/helicase of the West Nile Virus (WNV). To assess the selectivity of RENs against the viral enzymes, a truncated form of human enzyme Suv3((Delta1-159)) was also included in the study. Ring-expanded nucleosides 16, 17, and 19, which possess the long C-12, C-14, and C-18 side-chains, respectively, at position 6, as well as the ring-expanded heterocycle 39, which contains aralkyl substitution at position 1, were all found to have excellent profiles of activity and selectivity toward the viral versus human enzymes against the West Nile Virus (IC50 ranging 1-10 muM). Compound 30, while being an equally potent inhibitor of WNV, was found to be somewhat less selective, whereas compound 36, which is an alpha-anomeric counterpart of 30, exhibited potent and selective inhibition of WN-V (IC50 1-3 muM). The same compounds that showed potent inhibition of viral helicase activity completely failed to show any activity against the viral NTPase reaction even up to 500 muM. However, at concentrations >500 muM of RENs and the ATP concentrations >10 times the K-m value of the enzyme, a significant activation of NTPase activity was observed. This activating effect underwent further dramatic enhancement (>1000%) by further increases in ATP concentration in the reaction mixture, suggesting that the viral helicase and NTPase reactions are not coupled. A tentative mechanistic model has been proposed to explain the observed results.
    DOI:
    10.1021/jm030277k
点击查看最新优质反应信息

文献信息

  • Potent Inhibition of NTPase/Helicase of the West Nile Virus by Ring-Expanded (“Fat”) Nucleoside Analogues
    作者:Ning Zhang、Huan-Ming Chen、Verena Koch、Herbert Schmitz、Michal Minczuk、Piotr Stepien、Ali I. Fattom、Robert B. Naso、Kishna Kalicharran、Peter Borowski、Ramachandra S. Hosmane
    DOI:10.1021/jm030277k
    日期:2003.10.1
    A series of ring-expanded ("fat") nucleoside analogues (RENs) containing the 6-aminoimidazo-[4,5-e] [1,3]diazepine-4,8-dione ring system have been synthesized and screened for inhibition of NTPase/helicase of the West Nile Virus (WNV). To assess the selectivity of RENs against the viral enzymes, a truncated form of human enzyme Suv3((Delta1-159)) was also included in the study. Ring-expanded nucleosides 16, 17, and 19, which possess the long C-12, C-14, and C-18 side-chains, respectively, at position 6, as well as the ring-expanded heterocycle 39, which contains aralkyl substitution at position 1, were all found to have excellent profiles of activity and selectivity toward the viral versus human enzymes against the West Nile Virus (IC50 ranging 1-10 muM). Compound 30, while being an equally potent inhibitor of WNV, was found to be somewhat less selective, whereas compound 36, which is an alpha-anomeric counterpart of 30, exhibited potent and selective inhibition of WN-V (IC50 1-3 muM). The same compounds that showed potent inhibition of viral helicase activity completely failed to show any activity against the viral NTPase reaction even up to 500 muM. However, at concentrations >500 muM of RENs and the ATP concentrations >10 times the K-m value of the enzyme, a significant activation of NTPase activity was observed. This activating effect underwent further dramatic enhancement (>1000%) by further increases in ATP concentration in the reaction mixture, suggesting that the viral helicase and NTPase reactions are not coupled. A tentative mechanistic model has been proposed to explain the observed results.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐