Design, Synthesis, and Structure-Activity Relationship of Novel Dinucleotide Analogs as Agents against Herpes and Human Immunodeficiency Viruses
摘要:
A new acyclic nucleoside phosphonate (13) containing an adenine moiety was synthesized, which acted as an excellent inhibitor of calf mucosal adenosine deaminase. This inhibitory property allows it to exert great synergistic effect on certain antiviral agents (e.g., ara-A, 37). Phosphonate 13 was not phosphorylated by the bovine brain guanylate kinase nor by 5-phosphoribosyl 1-pyrophosphate synthetase. Syntheses of biologically active nucleotide phosphonate 40 and its phosphonoamidate derivative 42 were accomplished, which showed remarkable activity against herpes viruses and exhibited low host cell toxicity. 3'-Azido-nucleoside phosphonate 20 and 3'-fluoronucleoside phosphonate 32, as well as the corresponding dinucleotide analogs 47 and 48, and their respective phosphonoamidates 53-56 were also synthesized as new compounds, among which phosphonoamidates 53-56 showed potent activity against human immunodeficiency virus. Phosphonoamidates 55 and 56 bearing a methyl D-alaninate moiety exhibited less cellular toxicity than 53 and 54 bearing a methyl L-alaninate moiety. Nucleotide phosphonate 40 as well as dinucleotide phosphonates 47 and 48 were found susceptible to degradation by phosphodiesterases. Their respective phosphonoamidates 42 and 53-56, however, were completely resistant to snake venom and spleen enzymes.
Design, Synthesis, and Structure-Activity Relationship of Novel Dinucleotide Analogs as Agents against Herpes and Human Immunodeficiency Viruses
摘要:
A new acyclic nucleoside phosphonate (13) containing an adenine moiety was synthesized, which acted as an excellent inhibitor of calf mucosal adenosine deaminase. This inhibitory property allows it to exert great synergistic effect on certain antiviral agents (e.g., ara-A, 37). Phosphonate 13 was not phosphorylated by the bovine brain guanylate kinase nor by 5-phosphoribosyl 1-pyrophosphate synthetase. Syntheses of biologically active nucleotide phosphonate 40 and its phosphonoamidate derivative 42 were accomplished, which showed remarkable activity against herpes viruses and exhibited low host cell toxicity. 3'-Azido-nucleoside phosphonate 20 and 3'-fluoronucleoside phosphonate 32, as well as the corresponding dinucleotide analogs 47 and 48, and their respective phosphonoamidates 53-56 were also synthesized as new compounds, among which phosphonoamidates 53-56 showed potent activity against human immunodeficiency virus. Phosphonoamidates 55 and 56 bearing a methyl D-alaninate moiety exhibited less cellular toxicity than 53 and 54 bearing a methyl L-alaninate moiety. Nucleotide phosphonate 40 as well as dinucleotide phosphonates 47 and 48 were found susceptible to degradation by phosphodiesterases. Their respective phosphonoamidates 42 and 53-56, however, were completely resistant to snake venom and spleen enzymes.
Adenylate analogs as potent anti-herpes virus agents
申请人:National Science Council
公开号:US05733890A1
公开(公告)日:1998-03-31
Novel adenylate analogs having the following formula are synthesized in the present invention, which are found active against herpes simplex viruses: ##STR1## wherein R.sup.1 is hydroxyl, C.sub.1 -C.sub.4 alkoxy, an amino ester radical of --NHR.sup.3 COOR.sup.4, wherein R.sup.3 is a bivalent C.sub.1 -C.sub.4 saturated hydrocarbon and R.sup.4 is C.sub.1 -C.sub.4 alkyl; and R.sup.2 is hydroxyl, --O.sup.+ NH.sub.4 or ##STR2##
Design, Synthesis, and Structure-Activity Relationship of Novel Dinucleotide Analogs as Agents against Herpes and Human Immunodeficiency Viruses
作者:Gholam H. Hakimelahi、Ali A. Moosavi-Movahedi、Majid M. Sadeghi、Shwu-Chen Tsay、Jih Ru Hwu
DOI:10.1021/jm00023a004
日期:1995.11
A new acyclic nucleoside phosphonate (13) containing an adenine moiety was synthesized, which acted as an excellent inhibitor of calf mucosal adenosine deaminase. This inhibitory property allows it to exert great synergistic effect on certain antiviral agents (e.g., ara-A, 37). Phosphonate 13 was not phosphorylated by the bovine brain guanylate kinase nor by 5-phosphoribosyl 1-pyrophosphate synthetase. Syntheses of biologically active nucleotide phosphonate 40 and its phosphonoamidate derivative 42 were accomplished, which showed remarkable activity against herpes viruses and exhibited low host cell toxicity. 3'-Azido-nucleoside phosphonate 20 and 3'-fluoronucleoside phosphonate 32, as well as the corresponding dinucleotide analogs 47 and 48, and their respective phosphonoamidates 53-56 were also synthesized as new compounds, among which phosphonoamidates 53-56 showed potent activity against human immunodeficiency virus. Phosphonoamidates 55 and 56 bearing a methyl D-alaninate moiety exhibited less cellular toxicity than 53 and 54 bearing a methyl L-alaninate moiety. Nucleotide phosphonate 40 as well as dinucleotide phosphonates 47 and 48 were found susceptible to degradation by phosphodiesterases. Their respective phosphonoamidates 42 and 53-56, however, were completely resistant to snake venom and spleen enzymes.