The present invention provides a biological substance detection method for specifically detecting a biological substance from a pathological specimen, by which method, when immunostaining using a fluorescent label and staining for morphological observation using a staining agent for morphological observation are simultaneously performed, the results of fluorescence observation and immunostaining can be assessed properly even if the fluorescent label and/or the staining agent is/are deteriorated by irradiation with an excitation light. The biological substance detection method according to the present invention is characterized in that the brightness retention rate of an immunostained part is in a range of 80% to 120% in relation to the brightness retention rate of a part stained for morphological observation when the fluorescent label used for the immunostaining is observed.
The present invention provides a staining method in which the fluorescent staining properties in a fluorescently-immunostained specimen are not reduced even when an oil-based mounting medium is used. The present invention also provides a method of preventing deterioration of a fluorescent label caused by irradiation with excitation light and improving the light resistance in a fluorescently-immunostained specimen obtained by the staining method. The biological substance detection method according to the present invention is a biological substance detection method for specifically detecting a biological substance from a pathological specimen, which comprises the steps of: immunostaining the specimen with a fluorescent label; immobilizing the thus stained specimen; and mounting the thus immobilized specimen using a mounting medium comprising an organic solvent not freely miscible with water. In the biological substance detection method, the above-described mounting medium further comprises a discoloration inhibitor.
STAINING AGENT FOR STAINING TISSUE, PRODUCTION METHOD FOR STAINING AGENT FOR STAINING TISSUE, AND TISSUE STAINING KIT INCLUDING STAINING AGENT FOR STAINING TISSUE
申请人:Konica Minolta, Inc.
公开号:EP2966445A1
公开(公告)日:2016-01-13
An object of the present invention is to provide: a staining agent for tissue staining which has an improved fluorescence signal evaluation accuracy; and a tissue staining kit comprising the staining agent. The staining agent for tissue staining contains, as a staining component, dye-resin particles comprising thermosetting resin particles and a fluorescent dye immobilized on the resin particles, wherein the resin particles contains a substituent having an electric charge opposite to that of the fluorescent dye and forms an ionic bond or a covalent bond with the fluorescent dye, and the dye-resin particles have a particle size variation coefficient of 15% or less.
An object of the present invention is to provide a fluorophore having excellent initial emission intensity and light resistance, which is not easily discolored and does not affect the evaluation of the number of bright spots even when it is slightly discolored. The resin particle for fluorescence labeling is characterized by comprising a fluorescent dye immobilized in a resin particle, the fluorescent dye satisfying both of the following conditions (1) and (2): (1) the fluorescent dye alone in an aqueous solution has a concentration-dependent peak emission intensity in a range of 30 to 80 µM; and (2) the emission intensity at a concentration of 100 µM is not less than 80% of the peak emission intensity. It is preferred that the Stoke's shift of the fluorescent dye in an aqueous solution is not less than 25 nm. The fluorescent dye may be subjected to a solubilization treatment (such as an acid treatment). It is preferred that the fluorescent dye be encapsulated in a resin particle comprising a thermosetting resin.
FLUORESCENT NANOPARTICLES FOR BIOMOLECULAR STAINING AND MANUFACTURING METHOD FOR SAME
申请人:Konica Minolta, Inc.
公开号:EP3012632A1
公开(公告)日:2016-04-27
For fluorescent nanoparticles having a zeta potential of -10 mV to -60 mV at pH 7.0 or a zeta potential of 0 mV to -10 mV in a buffer of pH 6.0 to 8.0, an appropriate electrical repulsive force can be generated between biomolecules that are generally negatively charged and the fluorescent nanoparticles. As a result, non-specific binding between the fluorescent nanoparticles and the biomolecules is surppressed and the fluorescent nanoparticles are specifically bound to a biomolecule to be stained through interaction stronger than the electrical repulsive force, so that the visibility of the specific biomolecule to be stained can be improved. Further, since an appropriate electrical repulsive force is also generated between the fluorescent nanoparticles themselves, aggregation of the fluorescent nanoparticles can be inhibited and the dispersibility in a staining solution can thereby be maintained.