摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(E)-(R)-4-hydroxy-1-methyl-2-butenyl phenyl sulfide | 267668-20-2

中文名称
——
中文别名
——
英文名称
(E)-(R)-4-hydroxy-1-methyl-2-butenyl phenyl sulfide
英文别名
(R,E)-4-(phenylthio)pent-2-en-1-ol;trans-(R)-4-phenylthio-2-penten-1-ol;(E,4R)-4-phenylsulfanylpent-2-en-1-ol
(E)-(R)-4-hydroxy-1-methyl-2-butenyl phenyl sulfide化学式
CAS
267668-20-2
化学式
C11H14OS
mdl
——
分子量
194.298
InChiKey
GAAKNYIADVELKC-BRAIEQGRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.5
  • 重原子数:
    13
  • 可旋转键数:
    4
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.27
  • 拓扑面积:
    45.5
  • 氢给体数:
    1
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (E)-(R)-4-hydroxy-1-methyl-2-butenyl phenyl sulfide吡啶 、 lithium aluminium tetrahydride 、 三溴化磷 作用下, 以 四氢呋喃正戊烷 为溶剂, 反应 4.0h, 生成 (E)-(R)-1-methyl-2-butenyl phenyl sulfide
    参考文献:
    名称:
    Fe(II)-Catalyzed Imidation of Allyl Sulfides and Subsequent [2,3]-Sigmatropic Rearrangement. Preparation of α-Branched N-tert-Butyloxycarbonyl (Boc)-Protected N-Allylamines
    摘要:
    Allyl aryl sulfides 1 and 5 were shown to undergo an imidation/[2,3]-sigmatropic rearrangement reaction upon treatment with N-tert-butyloxycarbonyl azide (BocN(3)) and catalytic amounts of FeCl2 in CH2Cl2. The N-Boc-protected N-allyl sulfenamides 3 and 21 were obtained in yields between 48 and 75% (12 examples), Whereas the reaction is well suited for the transformation of alpha-unbranched sulfides to a-branched sulfenamides, the enantiomerically pure alpha-branched sulfides 10 and 13 reacted sluggishly. The corresponding sulfenamides 22 and 23 were obtained in only moderate enantiomeric excess (36-39% eel. A reaction mechanism is proposed that postulates the intermediacy of an N-Boc-substituted Fe(IV)-nitrene complex 14 acting as the imidation reagent in the catalytic cycle. Possible side reactions are discussed. The benzenesulfenamides 3 were further converted into N-Boc-N-allylamines 4 by removal of the phenylsulfanyl group. Bu3SnH in benzene was found to be the reagent of choice for the deprotection of alpha-branched amines that bear a secondary allyl substituent (five examples, 71-93% yield). This method failed for the alpha-branched amines 3i-k with a tertiary allyl substituent. The phenylsulfanyl group was finally removed with P(OEt)(3)/NEt3 in CH2Cl2 (three examples, 43-62% yield).
    DOI:
    10.1021/jo991569p
  • 作为产物:
    描述:
    参考文献:
    名称:
    Fe(II)-Catalyzed Imidation of Allyl Sulfides and Subsequent [2,3]-Sigmatropic Rearrangement. Preparation of α-Branched N-tert-Butyloxycarbonyl (Boc)-Protected N-Allylamines
    摘要:
    Allyl aryl sulfides 1 and 5 were shown to undergo an imidation/[2,3]-sigmatropic rearrangement reaction upon treatment with N-tert-butyloxycarbonyl azide (BocN(3)) and catalytic amounts of FeCl2 in CH2Cl2. The N-Boc-protected N-allyl sulfenamides 3 and 21 were obtained in yields between 48 and 75% (12 examples), Whereas the reaction is well suited for the transformation of alpha-unbranched sulfides to a-branched sulfenamides, the enantiomerically pure alpha-branched sulfides 10 and 13 reacted sluggishly. The corresponding sulfenamides 22 and 23 were obtained in only moderate enantiomeric excess (36-39% eel. A reaction mechanism is proposed that postulates the intermediacy of an N-Boc-substituted Fe(IV)-nitrene complex 14 acting as the imidation reagent in the catalytic cycle. Possible side reactions are discussed. The benzenesulfenamides 3 were further converted into N-Boc-N-allylamines 4 by removal of the phenylsulfanyl group. Bu3SnH in benzene was found to be the reagent of choice for the deprotection of alpha-branched amines that bear a secondary allyl substituent (five examples, 71-93% yield). This method failed for the alpha-branched amines 3i-k with a tertiary allyl substituent. The phenylsulfanyl group was finally removed with P(OEt)(3)/NEt3 in CH2Cl2 (three examples, 43-62% yield).
    DOI:
    10.1021/jo991569p
点击查看最新优质反应信息

文献信息

  • Regio- and Enantioselective Iridium-Catalyzed Allylation of Thiophenol: Synthesis of Enantiopure Allyl Phenyl Sulfides
    作者:Shengcai Zheng、Ning Gao、Wei Liu、Dongge Liu、Xiaoming Zhao、Theodore Cohen
    DOI:10.1021/ol101915b
    日期:2010.10.15
    A highly regio- and enantioselective allylic alkylation of sodium thiophenoxide has been realized by [Ir(COD)CI](2)/phosphoramidite along with CsF as an additive, producing highly enantioenriched allyl phenyl sulfide compounds with up to 99% ee.
  • Fe(II)-Catalyzed Imidation of Allyl Sulfides and Subsequent [2,3]-Sigmatropic Rearrangement. Preparation of α-Branched <i>N</i>-<i>tert</i>-Butyloxycarbonyl (Boc)-Protected <i>N</i>-Allylamines
    作者:Thorsten Bach、Christina Körber
    DOI:10.1021/jo991569p
    日期:2000.4.1
    Allyl aryl sulfides 1 and 5 were shown to undergo an imidation/[2,3]-sigmatropic rearrangement reaction upon treatment with N-tert-butyloxycarbonyl azide (BocN(3)) and catalytic amounts of FeCl2 in CH2Cl2. The N-Boc-protected N-allyl sulfenamides 3 and 21 were obtained in yields between 48 and 75% (12 examples), Whereas the reaction is well suited for the transformation of alpha-unbranched sulfides to a-branched sulfenamides, the enantiomerically pure alpha-branched sulfides 10 and 13 reacted sluggishly. The corresponding sulfenamides 22 and 23 were obtained in only moderate enantiomeric excess (36-39% eel. A reaction mechanism is proposed that postulates the intermediacy of an N-Boc-substituted Fe(IV)-nitrene complex 14 acting as the imidation reagent in the catalytic cycle. Possible side reactions are discussed. The benzenesulfenamides 3 were further converted into N-Boc-N-allylamines 4 by removal of the phenylsulfanyl group. Bu3SnH in benzene was found to be the reagent of choice for the deprotection of alpha-branched amines that bear a secondary allyl substituent (five examples, 71-93% yield). This method failed for the alpha-branched amines 3i-k with a tertiary allyl substituent. The phenylsulfanyl group was finally removed with P(OEt)(3)/NEt3 in CH2Cl2 (three examples, 43-62% yield).
查看更多