About 50% of the circulating species in plasma have been identified. The predominant species was asenapine N+-glucuronide; others included N-desmethylasenapine, N-desmethylasenapine N-carbamoyl glucuronide, and unchanged asenapine in smaller amounts. Asenapine activity is primarily due to the parent drug.
The metabolism and excretion of asenapine [(3aRS,12bRS)-5-chloro-2-methyl-2,3,3a,12b-tetrahydro-1H-dibenzo[2,3:6,7]-oxepino [4,5-c]pyrrole (2Z)-2-butenedioate (1:1)] were studied after sublingual administration of (14)C-asenapine to healthy male volunteers. ... Metabolic profiles were determined in plasma, urine, and feces using high-performance liquid chromatography with radioactivity detection. Approximately 50% of drug-related material in human plasma was identified or quantified. The remaining circulating radioactivity corresponded to at least 15 very polar, minor peaks (mostly phase II products). Overall, >70% of circulating radioactivity was associated with conjugated metabolites. Major metabolic routes were direct glucuronidation and N-demethylation. The principal circulating metabolite was asenapine N(+)-glucuronide; other circulating metabolites were N-desmethylasenapine-N-carbamoyl-glucuronide, N-desmethylasenapine, and asenapine 11-O-sulfate. In addition to the parent compound, asenapine, the principal excretory metabolite was asenapine N(+)-glucuronide. Other excretory metabolites were N-desmethylasenapine-N-carbamoylglucuronide, 11-hydroxyasenapine followed by conjugation, 10,11-dihydroxy-N-desmethylasenapine, 10,11-dihydroxyasenapine followed by conjugation (several combinations of these routes were found) and N-formylasenapine in combination with several hydroxylations, and most probably asenapine N-oxide in combination with 10,11-hydroxylations followed by conjugations. In conclusion, asenapine was extensively and rapidly metabolized, resulting in several regio-isomeric hydroxylated and conjugated metabolites.
Liver test abnormalities occur in 1% to 2.5% of patients receiving asenapine, but similar rates are reported with placebo therapy (0.6% to 1.3%) and with comparator agents. The ALT elevations are usually mild, transient and often resolve even without dose modification or drug discontinuation. There has been a single case report of cholestatic serum enzyme elevations arising 3 to 4 weeks after starting asenapine, resolving within a month of stopping. Thus, asenapine may be a rare cause of mild cholestatic liver injury.
来源:LiverTox
毒理性
相互作用
Potential pharmacologic interaction (possible disruption of body temperature regulation); use asenapine with caution in patients concurrently receiving drugs with anticholinergic activity.
潜在的药物相互作用(可能干扰体温调节);在接受具有抗胆碱活性的药物的患者中谨慎使用阿塞纳平。
Potential pharmacologic interaction (possible disruption of body temperature regulation); use asenapine with caution in patients concurrently receiving drugs with anticholinergic activity.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
相互作用
Potential pharmacologic interaction (additive CNS and respiratory depressant effects). Use with caution with other drugs that can produce CNS depression. Avoid use of alcohol during asenapine therapy.
可能的药物相互作用(增加中枢神经系统和呼吸抑制的效果)。与其他可能引起中枢神经系统抑制的药物一起使用时应谨慎。在阿塞纳平治疗期间避免使用酒精。
Potential pharmacologic interaction (additive CNS and respiratory depressant effects). Use with caution with other drugs that can produce CNS depression. Avoid use of alcohol during asenapine therapy.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
相互作用
Potential pharmacologic interaction (additive effect on QT-interval prolongation); avoid concomitant use of other drugs known to prolong the corrected QT (QTc) interval, including class Ia antiarrhythmics (e.g., quinidine, procainamide), class III antiarrhythmics (e.g., amiodarone, sotalol), some antipsychotic agents (e.g., chlorpromazine, thioridazine, haloperidol, olanzapine, pimozide, paliperidone, quetiapine, ziprasidone), some antibiotics (e.g., gatifloxacin, moxifloxacin), and tetrabenazine.
可能的药物相互作用(对QT间期延长的叠加效应);避免同时使用其他已知可延长校正QT(QTc)间期的药物,包括Ia类抗心律失常药(例如,奎尼丁,普鲁卡因胺),III类抗心律失常药(例如,胺碘酮,索他洛尔),一些抗精神病药(例如,氯丙嗪,硫利达嗪,氯哌醇,奥氮平,匹莫齐特,帕利哌酮,喹硫平,齐拉西酮),一些抗生素(例如,加替沙星,莫西沙星)和四苯氮唑。
Potential pharmacologic interaction (additive effect on QT-interval prolongation); avoid concomitant use of other drugs known to prolong the corrected QT (QTc) interval, including class Ia antiarrhythmics (e.g., quinidine, procainamide), class III antiarrhythmics (e.g., amiodarone, sotalol), some antipsychotic agents (e.g., chlorpromazine, thioridazine, haloperidol, olanzapine, pimozide, paliperidone, quetiapine, ziprasidone), some antibiotics (e.g., gatifloxacin, moxifloxacin), and tetrabenazine.
Because of its alpha1-adrenergic blocking activity and potential to cause hypotension, the manufacturer cautions that asenapine may enhance the hypotensive effects of certain antihypertensive agents and other drugs that can cause hypotension. Asenapine also has been associated with bradycardia. The manufacturer recommends that asenapine be used with caution in patients receiving other drugs that can cause hypotension or bradycardia, and that monitoring of orthostatic vital signs be considered in such patients. If hypotension develops, consider reducing the dosage of asenapine.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
阿塞那平通过舌下给药,因为口服给药后观察到生物利用度较低(小于2%)和广泛的首过代谢。
Asenapine is administered sublingually because of the low bioavailability (less than 2%) and extensive first-pass metabolism observed following oral administration.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
药物舌下片在舌下、舌上和颊粘膜处迅速吸收,峰值血药浓度在0.5-1.5小时内出现。
Sublingual tablets of the drug are rapidly absorbed in the sublingual, supralingual, and buccal mucosa following sublingual administration, with peak plasma concentrations occurring within 0.5-1.5 hours.
The absolute bioavailability of sublingual asenapine (5 mg) is 35%. Steady-state plasma concentrations are reached within 3 days with twice-daily sublingual administration.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在服用单次5毫克阿塞纳平后,平均Cmax大约为4 ng/mL,在平均tmax为1小时时观察到。
Following a single 5-mg dose of asenapine, the mean Cmax was approximately 4 ng/mL and was observed at a mean tmax of 1 hour.
[EN] PROCESS FOR THE PREPARATION OF ASENAPINE AND INTERMEDIATE PRODUCTS USED IN SAID PROCESS<br/>[FR] PROCÉDÉ DE PRÉPARATION D'ASÉNAPINE ET PRODUITS INTERMÉDIAIRES UTILISÉS DANS LEDIT PROCÉDÉ
申请人:ORGANON NV
公开号:WO2009087058A1
公开(公告)日:2009-07-16
The invention relates to a novel process for the preparation of asenapine, i.e. trans-5-chloro-2-methyl-2,3,3a,12b-tetrahydro-1H-dibenz[2,3:6,7]oxepino[4,5-c]pyrrole, as well as to novel intermediate products for use in said process.
PROCESS FOR PRODUCING TRANS-DIBENZOXENOPYRROLE COMPOUND AND INTERMEDIATE THEREFOR
申请人:Wang Weiqi
公开号:US20110046393A1
公开(公告)日:2011-02-24
The invention provides a process for production of trans-dibenzoxenopyrrole compounds, in which reduction, leaving group conversion, hydrogenation and methylation are carried out in that order. The process of the invention allows trans-dibenzoxenopyrrole compounds to be produced by a simpler procedure than conventional processes. The invention further provides novel compounds obtained as intermediates in the process, and a process for their production.
Novel crystalline salts of Asenapine with organic Di-acids and Tri-acids
申请人:Sandoz AG
公开号:EP2524919A1
公开(公告)日:2012-11-21
The invention relates to novel crystalline salts of Asenapine
with organic di-acids and tri-acids and to methods of their preparation. Furthermore the invention relates to the use of the novel salts in pharmaceutical compositions and to the use of the novel salts as medicaments, preferably in the treatment of psychotic diseases or disorders such as schizophrenia and acute mania associated with bipolar disorder.
The present application describes deuterium-enriched asenapine, pharmaceutically acceptable salt forms thereof, and methods of treating using the same.