Synthesis and Biological Evaluation of Guanidino Compounds Endowed with Subnanomolar Affinity as Competitive Inhibitors of Maize Polyamine Oxidase
摘要:
Previous studies on agmatine and its derivatives suggested that the presence of hydrophobic groups on the guanidine moiety was a crucial key for inhibitory activity of maize polyamine oxidase. Accordingly, new lipophilic agmatine and iminoctadine derivatives were synthesized and tested for their ability to inhibit this enzyme. Several compounds showed an affinity in the nanomolar range, while a cyclopropylmethyl derivative of iminoctadine was found to be the most potent inhibitor of maize polyamine oxidase reported so far (K-i = 0.08 nM).
Synthesis of linear and cyclic guazatine derivatives endowed with antibacterial activity
摘要:
Antibiotic resistance has reached alarming levels in many clinically-relevant human pathogens, and there is an increasing clinical need for new antibiotics active on drug-resistant Gram-negative pathogens who rapidly evolve towards pandrug resistance phenotypes. Here, we report on two related classes of guanidinic compounds endowed with antibacterial activity. The two best compounds (9a and 13d) exhibited the most potent antibacterial activity with MIC values ranging 0.12-8 mu g/ml with most tested pathogens, including both Gram-positive and Gram-negative bacteria. Interestingly, MIC values were not affected (1-8 mu g/ml) when measured using recent clinical isolates with various antibiotic resistance determinants. The results reported herein identify guazatine derivatives as an interesting starting point for the optimization of a potentially novel class of antibacterial agents. (C) 2014 Elsevier Ltd. All rights reserved.