摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(1R,4S,5R,8R)-4,8-dimethyl-1-ethyl-2,9-dioxabicyclo<3.3.1>nonan-6-one | 159102-36-0

中文名称
——
中文别名
——
英文名称
(1R,4S,5R,8R)-4,8-dimethyl-1-ethyl-2,9-dioxabicyclo<3.3.1>nonan-6-one
英文别名
——
(1R,4S,5R,8R)-4,8-dimethyl-1-ethyl-2,9-dioxabicyclo<3.3.1>nonan-6-one化学式
CAS
159102-36-0
化学式
C11H18O3
mdl
——
分子量
198.262
InChiKey
DJDJLIKQDBPNMD-SCVMZPAESA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.75
  • 重原子数:
    14.0
  • 可旋转键数:
    1.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.91
  • 拓扑面积:
    35.53
  • 氢给体数:
    0.0
  • 氢受体数:
    3.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (1R,4S,5R,8R)-4,8-dimethyl-1-ethyl-2,9-dioxabicyclo<3.3.1>nonan-6-one 在 cerium(III) chloride 、 四氯化钛 作用下, 以 二氯甲烷 为溶剂, 反应 4.5h, 生成 (2S,3R,4R)-6-(2-Ethyl-[1,3]dithiolan-2-yl)-2,4-dimethyl-heptane-1,3,4-triol
    参考文献:
    名称:
    Strategies for Macrolide Synthesis. A Concise Approach to Protected Seco-Acids of Erythronolides A and B
    摘要:
    Concise syntheses of protected derivatives of the seco-acids of erythronolides A and B, 5 and 6, respectively, have been completed wherein the longest linear sequence requires only 13 chemical steps from 5-ethylfuraldehyde (15). The syntheses commenced with the asymmetric aldol condensation of 15 according to the Evans protocol to afford the optically pure syn adduct 16, thereby establishing the critical stereocenters at C(4) and C(5) of the erythromycin backbone. Reductive removal of the chiral auxiliary from 16 gave the diol 17, which was converted to the bicyclic enone 18 by an one-pot process involving sequential oxidation of the furan ring and acid-catalyzed bicycloketalization. Stereoselective elaboration of 18 to the tertiary alcohol 19 was achieved in two steps by sequential treatment with lithium dimethylcuprate and methyllithium in the presence of cerium trichloride. Compound 19 underwent facile acid-catalyzed reorganization to the isomeric ketal 21, which was transformed into 24 by a Swern oxidation and a second asymmetric aldol condensation. However, the necessary refunctionalization of 24 into a ketone that would participate in the requisite aldol reaction to append the C(11)-C(15) segment of the erythronolide backbone could not be induced. On the other hand, transthioketalization of 19 gave the triol 26, which was converted to 28 by the thermodynamically-controlled formation of an acetonide of the 1,2-diol array. Deprotection of the C(9) ketone function followed by Swern oxidation produced the keto aldehyde 31, which underwent chemoselective, Lewis acid-mediated addition of tri-n-butylcrotylstannane to the aldehyde function to furnish a mixture (4:1) of the homoallylic alcohols 32 and 33; the major product 32 comprises the C(1)-C(10) subunit common to the seco-acids of both erythronolides A and B. Diastereoselective aldol condensation of the enolate derived from 32 with 40 gave 42 as the major adduct; oxidative processing of the terminal olefin then delivered the erythronolide B seco-acid derivative 46. The proposed structure of 42 was initially based upon its conversion into the polyol 48, which was identical to that derived from natural erythronolide B (49). Subsequent to this chemical correlation, the X-ray structure of 50, which was prepared from 42, unequivocally verified this assignment. In experiments directed toward the preparation of the seco-acid of erythronolide A, the directed aldol reactions of 32 with the aldehydes 59 and 60 were examined. Although the addition of the enolate of 32 to 59 produced none of the requisite adduct, its reaction with 60 gave a mixture (1:5) of 62 and 64. Stereoselective reduction of the C(9) carbonyl function of 62 followed by oxidative cleavage of the double bond and global deprotection gave the polyol 62, which was identical with the polyol derived from natural erythromycin A (1).
    DOI:
    10.1021/ja00090a016
  • 作为产物:
    参考文献:
    名称:
    Strategies for Macrolide Synthesis. A Concise Approach to Protected Seco-Acids of Erythronolides A and B
    摘要:
    Concise syntheses of protected derivatives of the seco-acids of erythronolides A and B, 5 and 6, respectively, have been completed wherein the longest linear sequence requires only 13 chemical steps from 5-ethylfuraldehyde (15). The syntheses commenced with the asymmetric aldol condensation of 15 according to the Evans protocol to afford the optically pure syn adduct 16, thereby establishing the critical stereocenters at C(4) and C(5) of the erythromycin backbone. Reductive removal of the chiral auxiliary from 16 gave the diol 17, which was converted to the bicyclic enone 18 by an one-pot process involving sequential oxidation of the furan ring and acid-catalyzed bicycloketalization. Stereoselective elaboration of 18 to the tertiary alcohol 19 was achieved in two steps by sequential treatment with lithium dimethylcuprate and methyllithium in the presence of cerium trichloride. Compound 19 underwent facile acid-catalyzed reorganization to the isomeric ketal 21, which was transformed into 24 by a Swern oxidation and a second asymmetric aldol condensation. However, the necessary refunctionalization of 24 into a ketone that would participate in the requisite aldol reaction to append the C(11)-C(15) segment of the erythronolide backbone could not be induced. On the other hand, transthioketalization of 19 gave the triol 26, which was converted to 28 by the thermodynamically-controlled formation of an acetonide of the 1,2-diol array. Deprotection of the C(9) ketone function followed by Swern oxidation produced the keto aldehyde 31, which underwent chemoselective, Lewis acid-mediated addition of tri-n-butylcrotylstannane to the aldehyde function to furnish a mixture (4:1) of the homoallylic alcohols 32 and 33; the major product 32 comprises the C(1)-C(10) subunit common to the seco-acids of both erythronolides A and B. Diastereoselective aldol condensation of the enolate derived from 32 with 40 gave 42 as the major adduct; oxidative processing of the terminal olefin then delivered the erythronolide B seco-acid derivative 46. The proposed structure of 42 was initially based upon its conversion into the polyol 48, which was identical to that derived from natural erythronolide B (49). Subsequent to this chemical correlation, the X-ray structure of 50, which was prepared from 42, unequivocally verified this assignment. In experiments directed toward the preparation of the seco-acid of erythronolide A, the directed aldol reactions of 32 with the aldehydes 59 and 60 were examined. Although the addition of the enolate of 32 to 59 produced none of the requisite adduct, its reaction with 60 gave a mixture (1:5) of 62 and 64. Stereoselective reduction of the C(9) carbonyl function of 62 followed by oxidative cleavage of the double bond and global deprotection gave the polyol 62, which was identical with the polyol derived from natural erythromycin A (1).
    DOI:
    10.1021/ja00090a016
点击查看最新优质反应信息

同类化合物

(双(2,2,2-三氯乙基)) (2-氧杂双环[4.1.0]庚烷-7-羧酸乙酯 高壮观霉素 香芹酮氧化物 雷公藤甲素 雷公藤内酯酮 雷公藤内酯三醇 雷公藤乙素 钴啉醇酰胺,Co-(氰基-kC)-,磷酸(酯),内盐,3'-酯和(5,6-二甲基-1-a-D-呋喃核糖基-1H-苯并咪唑-2-胺-2-14C-kN3)(9CI)二氢 钠甲醛2-羟基苯磺酸酯4-(4-羟基苯基)磺酰苯酚 醛固酮21-乙酸酯 醛固酮18,21-二乙酸酯 醋酸泼尼松龙环氧 醋酸氟轻松杂质 螺[1,3-二氧戊环-2,2'-[7]氧杂双环[4.1.0]庚烷] 苯甲酸,4-[3-(三氟甲基)-3H-重氮基丙因-3-基]-,2,5-二羰基-1-吡咯烷基酯 芳香松香 芍药苷代谢素 I 索迪叮 盐(9CI)二氢4H-吡咯并[3,2-d]嘧啶-4-酮,7-[(2S,3S,4R,5R)-3,4-二羟基-5-[(磷羧基氧代)甲基]-2-吡咯烷基]-1,5--,二铵 甲基[(1R,2S,4R,6S)-4-羟基-1-甲基-7-氧杂双环[4.1.0]庚-2-基]乙酸酯 甲基(1S,2S,5R)-1-乙氧基-2-甲基-3-氧杂双环[3.2.0]庚烷-2-羧酸酯 环龙胆四糖全乙酸酯 环氧环己基环四硅氧烷 环氧己烷 泼尼松龙环氧 氧杂环庚-4-酮 氧化环己烯 氧化异佛尔酮 氟米龙杂质 柠檬烯-1 2-环氧化物 景天庚酮糖 明奈德 戊哌醇 强心-4,16,20(22)-三烯交酯,7,8-环氧-11,14-二羟基-12-羰基-2,3-[[(2S,3S,4S,6R)-四氢-3-羟基-4-甲氧基-6-甲基-2H-吡喃-3,2-二基]二(氧代)]-,(2a,3b,7b,11a)-(9CI) 布地奈德杂质15 己二酸,二(4-甲基-7-氧杂二环[4.1.0]庚-3-基)酯 娄地青霉 多纹素 外-顺-7-氧杂二环<2.2.1>庚-5-烯-2,3-二甲醇碳酸酯 吡啶,1,2-二氢-4,5,6-三甲基-2-亚甲基-(9CI) 吡咯烷,1-(2-哌嗪基羰基)-(9CI) 台湾牛奶菜双氧甾甙 B 反式-1,2-环氧-4-叔丁基环己烷 反式-1,2-环氧-4-叔丁基环己烷 双((3,4-环氧环己基)甲基)己二酸酯 去环氧-脱氧雪腐镰刀菌烯醇 卡烯内酯甙 半短裸藻毒素B 十二氟-1,2-环氧环庚烷