摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Zn(2,8,12,18-Me4-3,7,13,17-Et4-10-(3,5-(t-Bu)2C6H3)-20-(4-C6H4CCC(CH2CH2)3CCCC6H5)C20H2N4) | 307924-15-8

中文名称
——
中文别名
——
英文名称
Zn(2,8,12,18-Me4-3,7,13,17-Et4-10-(3,5-(t-Bu)2C6H3)-20-(4-C6H4CCC(CH2CH2)3CCCC6H5)C20H2N4)
英文别名
4-phenylethynyl-1-[[zinc(II)5-(3,5-di-tert-butylphenyl)-2,8,12,18-tetraethyl-3,7,13,17-tetramethyl-15-porphyrinyl]-phenylethynyl]bicyclo[2.2.2]-octane
Zn(2,8,12,18-Me4-3,7,13,17-Et4-10-(3,5-(t-Bu)2C6H3)-20-(4-C6H4CCC(CH2CH2)3CCCC6H5)C20H2N4)化学式
CAS
307924-15-8
化学式
C70H76N4Zn
mdl
——
分子量
1038.79
InChiKey
GWUAUZYTPBIANQ-DMBZNWGDSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    参考文献:
    名称:
    基于卟啉的供体-桥-受体系统中的系统间交叉与电子转移:顺磁性物种的影响
    摘要:
    我们研究了受体的自旋状态如何影响供体-桥-受体 (DBA) 系统中的光物理过程。选择的系统以锌卟啉作为电子供体,高自旋或低自旋铁 (III) 卟啉作为受体。受体卟啉的自旋状态只需通过将咪唑配体与金属中心配位即可转换。DA 中心距为 26 A,桥接发色团从 pi 共轭到 sigma 键合系统不等。先前已证明此类系统中存在高自旋铁 (III) 卟啉可显着增强远程锌卟啉供体中的系统间交叉,而未观察到显着的电子转移至铁卟啉受体,即使热力学允许用于光致电子转移。这里,我们证明了通过将受体切换到低自旋状态,主要的光物理过程发生了巨大的变化;低自旋系统在皮秒时间尺度上显示出长程电子转移,系统间交叉以“正常”速率发生。
    DOI:
    10.1021/ja0370488
  • 作为产物:
    描述:
    zinc iodoporphyrin 、 [4-(Phenylethynyl)bicyclo[2.2.2]oct-1-yl]ethyne 在 三苯基膦 作用下, 以 甲苯 为溶剂, 以75%的产率得到Zn(2,8,12,18-Me4-3,7,13,17-Et4-10-(3,5-(t-Bu)2C6H3)-20-(4-C6H4CCC(CH2CH2)3CCCC6H5)C20H2N4)
    参考文献:
    名称:
    Mediated Electronic Coupling:  Singlet Energy Transfer in Porphyrin Dimers Enhanced by the Bridging Chromophore
    摘要:
    We have studied singlet electronic energy transfer (EET) in two donor-bridge-acceptor series (D-B -A), in which the donor (zinc porphyrin or its pyridine complex) and the acceptor (free base porphyrin) were covalently connected by a geometrically well-defined bridging chromophore. We have investigated how the medium between a donor and an acceptor influences EET by separating the influence of the electronic structure of the bridging chromophore from other effects known to influence the energy transfer. The electronic structure of the bridging chromophore was varied by changing the central unit (bicyclo[2.2.2]octane, benzene, naphthalene, or anthracene) in the bridging chromophore. In all systems the excited state energy separation donor-bridge and bridge-acceptor is large enough to prevent stepwise singlet energy transfer. In addition, the systems were designed to minimize conjugation to preserve the identity of the separate chromophores (donor, bridge, acceptor). Compared with the rate constant expected from the Forster theory, the bridging chromophore with bicyclo[2.2.2]octane as the central unit did not significantly enhance the energy transfer rate constant. However, the bridging chromophores with benzene and naphthalene as the central unit showed a moderate increase, whereas the bridging chromophore with anthracene as the central unit showed the largest increase in energy transfer rate constant. This increase is ascribed to a mediating effect of the bridging chromophore and it is proposed to be strongly correlated to the energy splitting between the singlet excited states of donor and bridging chromophores.
    DOI:
    10.1021/jp9909098
点击查看最新优质反应信息