Ethylene glycol-modified cobalt and iron oxalates as precursors for the synthesis of oxides as extended microsized and nanosized objects
摘要:
The reactions of ethylene glycol with iron and cobalt oxalates upon heating in air are reported. Heat treatment of mixtures of oxalate powders with ethylene glycol yields new compounds (solvates) via the replacement of the water molecules in the oxalate structure by ethylene glycol molecules: MC2O4 center dot 2H2O + HOCH2CH2OH = MC2O4(HOCH2CH2OH) + 2H2O up arrow. The crystals resulting from this reaction are elongated, and their shape is inherited by their thermolysis products. Thermolysis in air yields microwhiskers and nanowhiskers of Fe2O3 and Co3O4, and thermolysis in an inert atmosphere affords Fe3O4 and Co whiskers. The thermolysis of FeC2O4(HOCH2CH2OH) in helium yields a new structural modification of FeC2O4 as an intermediate product. The resulting compounds and their thermolysis products were characterized by X-ray powder diffraction, microscopy, IR spectroscopy, and thermogravimetric and chemical analyses. The particle shape and size were determined by scanning electron microscopy.
Ethylene glycol-modified cobalt and iron oxalates as precursors for the synthesis of oxides as extended microsized and nanosized objects
摘要:
The reactions of ethylene glycol with iron and cobalt oxalates upon heating in air are reported. Heat treatment of mixtures of oxalate powders with ethylene glycol yields new compounds (solvates) via the replacement of the water molecules in the oxalate structure by ethylene glycol molecules: MC2O4 center dot 2H2O + HOCH2CH2OH = MC2O4(HOCH2CH2OH) + 2H2O up arrow. The crystals resulting from this reaction are elongated, and their shape is inherited by their thermolysis products. Thermolysis in air yields microwhiskers and nanowhiskers of Fe2O3 and Co3O4, and thermolysis in an inert atmosphere affords Fe3O4 and Co whiskers. The thermolysis of FeC2O4(HOCH2CH2OH) in helium yields a new structural modification of FeC2O4 as an intermediate product. The resulting compounds and their thermolysis products were characterized by X-ray powder diffraction, microscopy, IR spectroscopy, and thermogravimetric and chemical analyses. The particle shape and size were determined by scanning electron microscopy.