Intramolecular Pd-Mediated Processes of Amino-Tethered Aryl Halides and Ketones: Insight into the Ketone α-Arylation and Carbonyl-Addition Dichotomy. A New Class of Four-Membered Azapalladacycles
摘要:
An exploration of the scope and limitations of Pd(0)-catalyzed intramolecular coupling reactions of amino-tethered aryl halides and ketones has been conducted. Two different and competitive reaction pathways starting from omega-(2-haloanilino) alkanones, enolate arylation and addition to the carbonyl group, have been observed, while (omega-(2-halobenzylamino) alkanones exclusively underwent the enolate arylation process. The dichotomy between ketone alpha-arylation and carbonyl-addition in the reactions of omega-(2-haloanilino) alkanones has been rationalized by the intermediacy of unprecedented four-membered azapalladacycles, from which X-ray data and chemical behavior are reported.
A general gamma-C(sp(2))-H iodination method directed by an aliphatic keto group has been developed under transition-metal-free conditions for the first time, generating iodoarenes in good to excellent yields with excellent site selectivity. This protocol features a wide range of aryl-substituted ketones, short reaction times, mild reaction conditions, and scalable synthetic procedures. A possible reaction mechanism was also proposed based on several control experiments.