摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 145525-93-5

分子结构分类

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
145525-93-5
化学式
Ar2*FH
mdl
——
分子量
99.9023
InChiKey
VVMJBSKBZJUNPE-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.15
  • 重原子数:
    3.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

  • 作为产物:
    描述:
    氢氟酸 以 neat (no solvent, gas phase) 为溶剂, 生成
    参考文献:
    名称:
    Laser-induced fluorescence spectroscopy of Ar2HF at vHF=3: An examination of three-body forces
    摘要:
    The vibrational spectrum of Ar2HF in the 11 320–11 430 cm−1 region is recorded by intracavity laser-induced fluorescence. The intramolecular vibrational state, Σ0, in combination with the intermolecular vibrations, assigned as Πin-plane, Πout-of-plane and Σ1, of the complex have been observed. The Σ0 state correlates adiabatically with j=0 of HF (v=3); the Πin-plane, Πout-of-plane, and Σ1 states correlate adiabatically with j=1 of HF (v=3), respectively. We have determined the vibrational band origins (and rotational constants) of ν0=11 323.784 cm−1 (A=0.120 15, B=0.058 30, C=0.038 94 cm−1), ν0=11 387.730 cm−1 (A=0.122 68, B=0.057 05, C=0.038 42 cm−1), ν0=11 426.815 cm−1 (A=0.120 27, B=0.058 15, C=0.038 71 cm−1) and ν0=11 427.400 cm−1 (A=0.120 26, B=0.058 15, C=0.038 71 cm−1) for Σ0, Πin-plane, Πout-of-plane, and Σ1 states, respectively. The vibrational red shift for the pure HF stretch from vHF=0–3 is 49.023 cm−1. The in-plane and out-of-plane bending frequencies are 63.947 and 103.031 cm−1. The Σ1 state, which may be viewed as the Ar2FH structure is located 103.616 cm−1 above the Ar2HF Σ0 state. The spectral line shapes appear to be well fitted by a Doppler profile with FWHM≈120 MHz, indicating that the predissociation linewidths have a Lorentzian component of less than 10 MHz. These results are compared with those of Farrell and Nesbitt [J. Chem. Phys. 105, 9421 (1996)] for vHF=1. The present experimental data set is also compared with the quantitative predictions by Ernesti and Hutson [Phys. Rev. A 51, 239 (1995)] and therefore serves as a rigorous test for modeling nonadditivity of intermolecular interactions and their vibrational dependence. These comparisons show that the vibrational dependence of three-body terms is accurate in the region of potential minimum. For configurations far from the energy minimum, appreciable discrepancies appear to exist. The vibrational variation of the Πin-plane bending frequency is relatively poorly predicted, which strongly suggests the inadequacy in the present modeling of the intriguing nonadditive forces for this prototypical system.
    DOI:
    10.1063/1.474947
点击查看最新优质反应信息

文献信息

  • Probing three‐body intermolecular forces: Near‐infrared spectroscopy of Ar<sub>2</sub>HF and Ar<sub>2</sub>DF van der Waals modes
    作者:John T. Farrell、David J. Nesbitt
    DOI:10.1063/1.472777
    日期:1996.12
    Four intermolecular vibrational states of the weakly bound complexes Ar2HF and Ar2DF have been studied via high-resolution infrared spectroscopy. The vibrations are accessed as combination bands built on the v=1 HF or DF intramolecular stretch. These van der Waals vibrational states correlate adiabatically with j=1 motion of a hindered HF/DF rotor, corresponding to librational motion either in, or out of, the molecular plane. The vibrational origins of the Ar2HF in-plane and out-of-plane bends are 4008.9665(24) and 4035.174 41(86) cm−1, respectively, which are 62.374 and 88.582 cm−1 above the origin of the intermolecular ground state in the vHF=1 manifold. For Ar2DF, the in-plane and out-of-plane origins are 2939.836 63(4) and 2967.101 29(5) cm−1, respectively, which correspond to intermolecular bending frequencies in the vDF=1 manifold of 44.852 and 72.117 cm−1. Two-dimensional angular calculations are presented which solve for the hindered rotor HF/DF eigenfunctions and eigenvalues on a pairwise additive potential constructed using a rigid Ar2 framework; the predicted bending frequencies reproduce the correct energy ordering of the vibrational levels, but are systematically greater than experimentally observed. Rigorous full five-dimensional theoretical calculations of the intermolecular vibrational frequencies by Ernesti and Hutson [Phys. Rev. A 51 239 (1995)] on the full pairwise additive surface are found to be as much as 11% higher than the experimental values, indicating the presence of three-body repulsive contributions to the true angular potential. Inclusion of conventional three-body dispersion and induction terms can only account for a minority (≊1/3) of the observed discrepancies. The majority (≊2/3) of the vibrational shifts can be attributed to three-body ‘‘exchange’’ effects, i.e., the strongly anisotropic interaction of the HF/DF dipole with an exchange quadrupole formed by Ar–Ar. Inclusion of all three nonadditive terms (dispersion, induction, and exchange) improves the agreement with experiment by up to an order of magnitude.
查看更多

同类化合物

()-2-(5-甲基-2-氧代苯并呋喃-3(2)-亚乙基)乙酸乙酯 (甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (反式)-4-壬烯醛 (双(2,2,2-三氯乙基)) (乙腈)二氯镍(II) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (±)17,18-二HETE (±)-辛酰肉碱氯化物 (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (s)-2,3-二羟基丙酸甲酯 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 ([2-(萘-2-基)-4-氧代-4H-色烯-8-基]乙酸) ([1-(甲氧基甲基)-1H-1,2,4-三唑-5-基](苯基)甲酮) (Z)-5-辛烯甲酯 (Z)-4-辛烯醛 (Z)-4-辛烯酸 (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-盐酸沙丁胺醇 (S)-溴烯醇内酯 (S)-氨氯地平-d4 (S)-氨基甲酸酯β-D-O-葡糖醛酸 (S)-8-氟苯并二氢吡喃-4-胺 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(((2,2-二氟-1-羟基-7-(甲基磺酰基)-2,3-二氢-1H-茚满-4-基)氧基)-5-氟苄腈 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (SP-4-1)-二氯双(喹啉)-钯 (SP-4-1)-二氯双(1-苯基-1H-咪唑-κN3)-钯