Kinetics of the reaction of CO2 and ethylethanolamine (EMEA) in aqueous solutions has been studied using the stopped-flow technique with conductivity detection. Measurements were performed at 288 K, 293 K, 298 K, and 303 K. Amine concentration ranged from 10 mol m−3 to 37.5 mol m−3. The termolecular mechanism was applied to interpret the kinetic data. In this mechanism, carbamate formation occurs in a single-step reaction without the formation of a zwitterion intermediate. An original method of analyzing the experimental data was proposed allowing the derivation of pseudo second order rate constants from the measured kinetic traces. Based on these values, the third order rate constants $$\left( k_H_2 O} } \right)$$ of the reaction of CO2, water, and EMEA were derived and correlated by the Arrhenius equation.