Synthesis and Structure–Activity Relationships of Varied Ether Linker Analogues of the Antitubercular Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824)
摘要:
New analogues of antitubercular drug PA-824 were synthesized, featuring alternative side chain ether linkers of varying size and flexibility, seeking drug candidates with enhanced metabolic stability and high efficacy. Both alpha-methyl substitution and removal of the benzylic methylene were broadly tolerated in vitro, with a biaryl example of the latter class exhibiting an 8-fold better efficacy than the parent drug in a mouse model of acute Mycobacterium tuberculosis infection and negligible fragmentation to an alcohol metabolite in liver microsomes. Extended linkers (notably propenyloxy, propynyloxy, and pentynyloxy) provided greater potencies against replicating M. tb (monoaryl analogues), with propynyl ethers being most effective under anaerobic (nonreplicating) conditions (mono/biaryl analogues). For benzyloxybenzyl and biaryl derivatives, aerobic activity was maximal with the original (OCH2) linker. One propynyloxy-linked compound displayed an 89-fold higher efficacy than the parent drug in the acute model, and it was slightly superior to antitubercular drug OPC-67683 in a chronic infection model.
Synthesis and Structure–Activity Relationships of Varied Ether Linker Analogues of the Antitubercular Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824)
摘要:
New analogues of antitubercular drug PA-824 were synthesized, featuring alternative side chain ether linkers of varying size and flexibility, seeking drug candidates with enhanced metabolic stability and high efficacy. Both alpha-methyl substitution and removal of the benzylic methylene were broadly tolerated in vitro, with a biaryl example of the latter class exhibiting an 8-fold better efficacy than the parent drug in a mouse model of acute Mycobacterium tuberculosis infection and negligible fragmentation to an alcohol metabolite in liver microsomes. Extended linkers (notably propenyloxy, propynyloxy, and pentynyloxy) provided greater potencies against replicating M. tb (monoaryl analogues), with propynyl ethers being most effective under anaerobic (nonreplicating) conditions (mono/biaryl analogues). For benzyloxybenzyl and biaryl derivatives, aerobic activity was maximal with the original (OCH2) linker. One propynyloxy-linked compound displayed an 89-fold higher efficacy than the parent drug in the acute model, and it was slightly superior to antitubercular drug OPC-67683 in a chronic infection model.
Accessing Polycyclic Heteroarenes Enabled by Copper-Catalyzed Aerobic Oxidative C–H/C–H [4 + 2] Annulation of 3-Arylindole Derivatives
作者:Yuanyuan Yue、Yan Yang、Chunying Sun、Junli Chao、Yaqing Ye、Xiaohui Guo、Jianming Liu
DOI:10.1021/acs.orglett.1c03686
日期:2022.1.21
polycyclic aromatic hydrocarbons are delivered at room temperature by copper-catalyzedaerobicoxidative C–H/C–H [4 + 2] annulation of alkyl-substituted 3-arylindole derivatives. Specifically, dual aryl C–H functionalization is furnished under mild conditions through the 1,2-migration of copper catalyst and regioselective alkyne insertion. Mechanistic experiments demonstrate that the C–H bond cleavage