摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2R,3R)-4-tert-Butoxycarbonylamino-3-hydroxy-2-methyl-butyric acid | 160054-23-9

中文名称
——
中文别名
——
英文名称
(2R,3R)-4-tert-Butoxycarbonylamino-3-hydroxy-2-methyl-butyric acid
英文别名
(2R,3R)-3-hydroxy-2-methyl-4-[(2-methylpropan-2-yl)oxycarbonylamino]butanoic acid
(2R,3R)-4-tert-Butoxycarbonylamino-3-hydroxy-2-methyl-butyric acid化学式
CAS
160054-23-9
化学式
C10H19NO5
mdl
——
分子量
233.265
InChiKey
VMGKEQKZCPQICX-RQJHMYQMSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    413.8±40.0 °C(predicted)
  • 密度:
    1.173±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    0.59
  • 重原子数:
    16.0
  • 可旋转键数:
    4.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.8
  • 拓扑面积:
    95.86
  • 氢给体数:
    3.0
  • 氢受体数:
    4.0

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Total Synthesis of Bleomycin A2 and Related Agents. 1. Synthesis and DNA Binding Properties of the Extended C-Terminus: Tripeptide S, Tetrapeptide S, Pentapeptide S, and Related Agents
    摘要:
    Full details of concise, diastereocontrolled syntheses of 2-5 and their incorporation into tri-, tetra-, and pentapeptide S, the C-terminus of bleomycin Alt are described. The extension of the studies to the synthesis of a complete set of tri- and tetrapeptide S structural analogs 29a,b and 43b-j is detailed, and their DNA binding constants (apparent K-B, calf thymus DNA) and apparent binding site sizes were determined. Consistent with past observations, the studies highlight the fact that the majority of the DNA binding affinity for bleomycin A(2) (1.0 X 10(5) M(-1)) and deglycobleomycin Aa (1.1 x 10(5) M(-1)) is embodied within N-BOC-tripeptide S (0.26 X 10(5) M(-1)). The additional comparisons of 29a (O.18 x 10(5) M(-1)), N-BOC-tetrapeptide S (0.21 x 10(5) M(-1)), 43h (0.20 x 10(5) M(-1)), and N-BOC-pentapeptide S (0.23 X 10(5) M(-1)) versus N-BOC-dipeptide S (0.10 x 10(5) M(-1)) indicate productive stabilizing binding interactions for the tripeptide S L-threonine subunit and substituent, illustrate that the entire pentanoic acid subunit of tetrapeptide S and its substituents do not significantly contribute to DNA binding affinity, and indicate that the entire beta-hydroxy-L-histidine subunit of pentapeptide S does not contribute to DNA binding affinity. With the exception of the L-threonine side chain substituent, the observations suggest that the tri- and tetrapeptide S substituent effects on the bleomycin A(2) DNA cleavage reaction are not due to substantial stabilizing binding interactions with duplex DNA. In addition, the measured apparent binding site sizes for bleomycin A(2)(3.8 base pairs), deglycobleomycin A(2) (3.9 base pairs), N-BOC-tripeptide S (3.6 base pairs), N-BOC-tetrapeptide S (3.7 base pairs), 43h (3.5 base pairs), and N-BOC-pentapeptide S (4.2 base pairs) versus N-BOC-dipeptide S (2.2 base pairs) and 29a (2.7 base pairs) suggest that it is the tripeptide S subunit of bleomycin A(2) that is fully bound to duplex DNA, that the tripeptide S L-threonine hydroxyethyl substituent detectably affects the agent interaction with duplex DNA, but that the presence or absence of the other tetrapeptide S and pentapeptide S backbone substituents do not substantially alter the binding site size or tripeptide S binding mode.
    DOI:
    10.1021/ja00092a011
  • 作为产物:
    参考文献:
    名称:
    Total Synthesis of Bleomycin A2 and Related Agents. 1. Synthesis and DNA Binding Properties of the Extended C-Terminus: Tripeptide S, Tetrapeptide S, Pentapeptide S, and Related Agents
    摘要:
    Full details of concise, diastereocontrolled syntheses of 2-5 and their incorporation into tri-, tetra-, and pentapeptide S, the C-terminus of bleomycin Alt are described. The extension of the studies to the synthesis of a complete set of tri- and tetrapeptide S structural analogs 29a,b and 43b-j is detailed, and their DNA binding constants (apparent K-B, calf thymus DNA) and apparent binding site sizes were determined. Consistent with past observations, the studies highlight the fact that the majority of the DNA binding affinity for bleomycin A(2) (1.0 X 10(5) M(-1)) and deglycobleomycin Aa (1.1 x 10(5) M(-1)) is embodied within N-BOC-tripeptide S (0.26 X 10(5) M(-1)). The additional comparisons of 29a (O.18 x 10(5) M(-1)), N-BOC-tetrapeptide S (0.21 x 10(5) M(-1)), 43h (0.20 x 10(5) M(-1)), and N-BOC-pentapeptide S (0.23 X 10(5) M(-1)) versus N-BOC-dipeptide S (0.10 x 10(5) M(-1)) indicate productive stabilizing binding interactions for the tripeptide S L-threonine subunit and substituent, illustrate that the entire pentanoic acid subunit of tetrapeptide S and its substituents do not significantly contribute to DNA binding affinity, and indicate that the entire beta-hydroxy-L-histidine subunit of pentapeptide S does not contribute to DNA binding affinity. With the exception of the L-threonine side chain substituent, the observations suggest that the tri- and tetrapeptide S substituent effects on the bleomycin A(2) DNA cleavage reaction are not due to substantial stabilizing binding interactions with duplex DNA. In addition, the measured apparent binding site sizes for bleomycin A(2)(3.8 base pairs), deglycobleomycin A(2) (3.9 base pairs), N-BOC-tripeptide S (3.6 base pairs), N-BOC-tetrapeptide S (3.7 base pairs), 43h (3.5 base pairs), and N-BOC-pentapeptide S (4.2 base pairs) versus N-BOC-dipeptide S (2.2 base pairs) and 29a (2.7 base pairs) suggest that it is the tripeptide S subunit of bleomycin A(2) that is fully bound to duplex DNA, that the tripeptide S L-threonine hydroxyethyl substituent detectably affects the agent interaction with duplex DNA, but that the presence or absence of the other tetrapeptide S and pentapeptide S backbone substituents do not substantially alter the binding site size or tripeptide S binding mode.
    DOI:
    10.1021/ja00092a011
点击查看最新优质反应信息