摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(Z)-(4-methoxystyryl)(methyl)diphenylsilane | 1398694-60-4

中文名称
——
中文别名
——
英文名称
(Z)-(4-methoxystyryl)(methyl)diphenylsilane
英文别名
[(Z)-2-(4-methoxyphenyl)ethenyl]-methyl-diphenylsilane
(Z)-(4-methoxystyryl)(methyl)diphenylsilane化学式
CAS
1398694-60-4
化学式
C22H22OSi
mdl
——
分子量
330.502
InChiKey
AVXQRGIRHHWTFR-ZCXUNETKSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.14
  • 重原子数:
    24
  • 可旋转键数:
    5
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.09
  • 拓扑面积:
    9.2
  • 氢给体数:
    0
  • 氢受体数:
    1

反应信息

  • 作为产物:
    描述:
    二苯甲基硅烷4-乙炔基苯甲醚 在 methylenebis((N-2-methoxyethyl-κO,κO’)imidazole-2-ylidene)-(diiodo)rhodium(III) tetrafluoroborate 作用下, 以 氘代丙酮 为溶剂, 反应 5.0h, 生成 (Z)-(4-methoxystyryl)(methyl)diphenylsilane
    参考文献:
    名称:
    末端炔烃β-Z氢化硅烷化的另一种机制范式:丙酮作为硅烷穿梭的作用
    摘要:
    迄今为止,通过在经典机理中引入异构化步骤,可以解释末端炔烃的氢化硅烷化中的β- Z选择性。系统[M(I)2 {κ-C,C,O,O-(bis-NHC)}] BF 4(M = Ir(3 a),Rh(3 b); bis的DFT计算和实验观察‐NHC =亚甲基双(N -2-甲氧基乙基)咪唑-2-亚基)支持一种新机制,可替代基于外层模型的经典假设。由金属中心和丙酮(溶剂)硅烷分子的异裂分裂,得到一个金属氢化物和oxocarbenium离子[R 3的Si  O(CH 3)2 ]+,其中发生反应与溶液中的相应的炔,得到甲硅烷基化产物[R 3的Si  CHC  R] +。因此,丙酮通过将甲硅烷基部分从硅烷转移至炔烃而充当硅烷穿梭。最后,将氢基的亲核进攻配体在[R 3的Si  CHC  R] +,得到选择性地将β-(Ž)-vinylsilane。β- Z选择性的解释是基于产生β-(E)-乙烯基
    DOI:
    10.1002/chem.201303063
点击查看最新优质反应信息

文献信息

  • Dichotomy of Manganese Catalysis via Organometallic or Radical Mechanism: Stereodivergent Hydrosilylation of Alkynes
    作者:Xiaoxu Yang、Congyang Wang
    DOI:10.1002/anie.201710206
    日期:2018.1.22
    Herein, we disclose the first manganese‐catalyzed hydrosilylation of alkynes featuring diverse selectivities. The highly selective formation of E‐products was achieved by using mononuclear MnBr(CO)5 with the arsenic ligand, AsPh3. Whereas using the dinuclear catalyst Mn2(CO)10 and LPO (dilauroyl peroxide) enabled the reversed generation of Z‐products in good to excellent stereo‐ and regioselectivity
    本文中,我们公开了具有多种选择性的炔烃的首次催化氢化硅烷化反应。通过使用具有配体AsPh 3的单核MnBr(CO)5可以实现E产品的高度选择性形成。而使用双核催化剂Mn 2(CO)10和LPO(过氧化二月桂酰二氧戊二烯)可以实现Z产物的反向生成,具有良好的立体选择性和区域选择性。这种控制反应立体选择性的方法是前所未有的。机理实验揭示了通过E-和Z上运行的有机属和自由基途径对催化作用的二分法选择性路线。
  • A synthon for a 14-electron Ir(iii) species: catalyst for highly selective β-(Z) hydrosilylation of terminal alkynes
    作者:Manuel Iglesias、María Pérez-Nicolás、Pablo J. Sanz Miguel、Victor Polo、Francisco J. Fernández-Alvarez、Jesús J. Pérez-Torrente、Luis A. Oro
    DOI:10.1039/c2cc34931k
    日期:——
    A synthon for a 14-electron Ir(III) species is described. The geometrical control exerted by the ligand system over the Ir–alkenyl intermediate in hydrosilylation of terminal alkynes precludes formation of the more thermodynamically stable β-(E)-vinylsilane, thus affording the β-(Z) isomer in excellent yields.
    本文描述了一种 14 电子(III)的合成物。在末端炔烃的氢化过程中,配体系统对烷基中间体的几何控制排除了形成热力学上更稳定的δ-(E)-乙烯基硅烷的可能性,从而以优异的收率获得了δ-(Z)异构体。
  • β-(<i>Z</i>)-Selective alkyne hydrosilylation by a N,O-functionalized NHC-based rhodium(<scp>i</scp>) catalyst
    作者:Miguel González-Lainez、M. Victoria Jiménez、Vincenzo Passarelli、Jesús J. Pérez-Torrente
    DOI:10.1039/d3dt01911j
    日期:——
    Neutral and cationic cyclooctadiene rhodium(I) complexes with a lutidine-derived polydentate ligand having NHC and methoxy side-donor functions, [RhBr(cod)(κC-tBuImCH2PyCH2OMe)] and [Rh(cod)(κ2C,N-tBuImCH2PyCH2OMe)]PF6, have been prepared. Carbonylation of the cationic compound yields the dicarbonyl complex [Rh(CO)2(κ2C,N-tBuImCH2PyCH2OMe)]PF6 whereas carbonylation of the neutral compound affords a
    中性和阳离子环辛二烯 ( I ) 与具有 NHC 和甲氧基侧供体功能的二甲基吡啶衍生的多齿配体的络合物,[RhBr(cod)(κC- t BuImCH 2 PyCH 2 OMe)] 和 [Rh(cod)(κ 2 )已制备出C,N- t BuImCH 2 PyCH 2 OMe)]PF 6 。阳离子化合物的羰基化产生二羰基络合物 [Rh(CO) 2 (κ 2 C,N- t BuImCH 2 PyCH 2 OMe)]PF 6而中性化合物的羰基化产生二羰基和单羰基中性络合物的混合物 [RhBr (CO) 2 (κC- t BuImCH 2 PyCH 2 OMe)]和[RhBr(CO)(κ 2 C,N- t BuImCH 2 PyCH 2 OMe)]。这些配合物有效催化 1-己炔与 HSiMe 2 Ph 的氢化硅烷化反应,对 β-( Z )-乙烯基硅烷产物具有显着的选择性。催化剂[RhBr(CO)(κ
  • Hydrosilylation of Terminal Alkynes Catalyzed by a ONO-Pincer Iridium(III) Hydride Compound: Mechanistic Insights into the Hydrosilylation and Dehydrogenative Silylation Catalysis
    作者:Jesús J. Pérez-Torrente、Duc Hanh Nguyen、M. Victoria Jiménez、F. Javier Modrego、Raquel Puerta-Oteo、Daniel Gómez-Bautista、Manuel Iglesias、Luis A. Oro
    DOI:10.1021/acs.organomet.6b00471
    日期:2016.7.25
    The catalytic activity in the hydrosilylation of terminal alkynes by the unsaturated hydrido iridium(III) compound [IrH(kappa(3)-hqca)(coe)] (1), which contains the rigid asymmetrical dianionic ONO pincer ligand 8-oxidoquinoline-2-carboxylate, has been studied. A range of aliphatic and aromatic 1-alkynes has been efficiently reduced using various hydrosilanes. Hydrosilylation of the linear 1-alkynes hex-1-yne and oct-1-yne gives a good selectivity toward the beta-(Z)-vinylsilane product, while for the bulkier t-Bu-C CH a reverse selectivity toward the beta-(E)-vinylsilane and significant amounts of alkene, from a competitive dehydrogenative silylation, has been observed. Compound 1, unreactive toward silanes, reacts with a range of terminal alkynes RC CH, affording the unsaturated eta(1)-alkenyl complexes [Ir(kappa(3)-hqca)(E-CH=CHR)(coe)] in good yield. These species are able to coordinate monodentate neutral ligands such as PPh3 and pyridine, or CO in a reversible way, to yield octahedral derivatives. Further mechanistic aspects of the hydrosilylation process have been studied by DFT calculations. The catalytic cycle passes through Ir(III) species with an iridacyclopropene (eta(2)-vinylsilane) complex as the key intermediate. It has been found that this species may lead both to the dehydrogenative silylation products, via a beta-elimination process, and to a hydrosilylation cycle. The beta-elimination path has a higher activation energy than hydrosilylation. On the other hand, the selectivity to the vinylsilane hydrosilylation products can be accounted for by the different activation energies involved in the attack of a silane molecule at two different faces of the iridacyclopropene ring to give eta(1)-vinylsilane complexes with either an E or Z configuration. Finally, proton transfer from a eta(2)-silane to a eta(1)-vinylsilane ligand results in the formation of the corresponding beta-(Z)- and beta-(E)-vinylsilane isomers, respectively.
查看更多

同类化合物

(R)-3-(叔丁基)-4-(2,6-二异丙氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (2S,3R)-3-(叔丁基)-2-(二叔丁基膦基)-4-甲氧基-2,3-二氢苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2R,2''R,3R,3''R)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2-氟-3-异丙氧基苯基)三氟硼酸钾 (+)-6,6'-{[(1R,3R)-1,3-二甲基-1,3基]双(氧)}双[4,8-双(叔丁基)-2,10-二甲氧基-丙二醇 麦角甾烷-6-酮,2,3,22,23-四羟基-,(2a,3a,5a,22S,23S)- 鲁前列醇 顺式6-(对甲氧基苯基)-5-己烯酸 顺式-铂戊脒碘化物 顺式-四氢-2-苯氧基-N,N,N-三甲基-2H-吡喃-3-铵碘化物 顺式-4-甲氧基苯基1-丙烯基醚 顺式-2,4,5-三甲氧基-1-丙烯基苯 顺式-1,3-二甲基-4-苯基-2-氮杂环丁酮 非那西丁杂质7 非那西丁杂质3 非那西丁杂质22 非那西丁杂质18 非那卡因 非布司他杂质37 非布司他杂质30 非布丙醇 雷诺嗪 阿达洛尔 阿达洛尔 阿莫噁酮 阿莫兰特 阿维西利 阿索卡诺 阿米维林 阿立酮 阿曲汀中间体3 阿普洛尔 阿普斯特杂质67 阿普斯特中间体 阿普斯特中间体 阿托西汀EP杂质A 阿托莫西汀杂质24 阿托莫西汀杂质10 阿托莫西汀EP杂质C 阿尼扎芬 阿利克仑中间体3 间苯胺氢氟乙酰氯 间苯二酚二缩水甘油醚 间苯二酚二异丙醇醚 间苯二酚二(2-羟乙基)醚 间苄氧基苯乙醇 间甲苯氧基乙酸肼 间甲苯氧基乙腈 间甲苯异氰酸酯