New cholesterol esterase inhibitors based on rhodanine and thiazolidinedione scaffolds
摘要:
We present a new class of inhibitors of pancreatic cholesterol esterase (CEase) based on 'priviledged' 5-benzylidenerhodanine and 5-benzylidene-2,4-thiazolidinedione structural scaffolds. The lead structures (5-benzylidenerhodanine 4a and 5-benzylidene-2,4-thiazolidinedione 4b) were identified in an in-house screening and these inhibited CEase with some selectivity over another serine hydrolase, acetylcholinesterase (AChE) (4a, CEase IC50 = 1.76 mu M vs AChE IC50 = 5.14 mu M and 4b, CEase IC50 = 5.89 mu M vs AChE IC50 > 100 mu M). A small library of analogs (5a-10a) containing a core amino acid in place of the glycerol group of the lead structures, was prepared to explore other potential binding interaction with CEase. These analogs inhibited CEase with IC50 values ranging from 1.44 to 85 mu M, with the majority exhibiting some selectivity for CEase versus AChE. The most potent compound of the library (10a) had 17-fold selectivity over AChE. We also report molecular docking (with CEase) and detailed kinetic analysis on the amino acid analogs to further understand the associated structure-activity relationships. (C) 2011 Elsevier Ltd. All rights reserved.
New cholesterol esterase inhibitors based on rhodanine and thiazolidinedione scaffolds
摘要:
We present a new class of inhibitors of pancreatic cholesterol esterase (CEase) based on 'priviledged' 5-benzylidenerhodanine and 5-benzylidene-2,4-thiazolidinedione structural scaffolds. The lead structures (5-benzylidenerhodanine 4a and 5-benzylidene-2,4-thiazolidinedione 4b) were identified in an in-house screening and these inhibited CEase with some selectivity over another serine hydrolase, acetylcholinesterase (AChE) (4a, CEase IC50 = 1.76 mu M vs AChE IC50 = 5.14 mu M and 4b, CEase IC50 = 5.89 mu M vs AChE IC50 > 100 mu M). A small library of analogs (5a-10a) containing a core amino acid in place of the glycerol group of the lead structures, was prepared to explore other potential binding interaction with CEase. These analogs inhibited CEase with IC50 values ranging from 1.44 to 85 mu M, with the majority exhibiting some selectivity for CEase versus AChE. The most potent compound of the library (10a) had 17-fold selectivity over AChE. We also report molecular docking (with CEase) and detailed kinetic analysis on the amino acid analogs to further understand the associated structure-activity relationships. (C) 2011 Elsevier Ltd. All rights reserved.
5-Benzylidenerhodanine and 5-benzylidene-2-4-thiazolidinedione based antibacterials
作者:Ondrej Zvarec、Steven W. Polyak、William Tieu、Kevin Kuan、Huanqin Dai、Daniel Sejer Pedersen、Renato Morona、Lixin Zhang、Grant W. Booker、Andrew D. Abell
DOI:10.1016/j.bmcl.2012.02.100
日期:2012.4
Herein we outline the antibacterial activity of amino acid containing thiazolidinediones and rhodanines against Gram-positive bacteria Staphylococcus aureus ATCC 31890, Staphylococcus epidermidis and Bacillus subtilis ATCC 6633. The rhodanine derivatives were generally more active than the analogous thiazolidinediones. Compounds of series 5 showed some selectivity for Bacillus subtilis ATCC 6633, the extent of which is enhanced by the inclusion of a non-polar amino acid at the 5-position of the core thiazolidinediones and rhodanines scaffolds. SAR data of series 8 demonstrated improved activity against the clinically more significant Staphylococci with selectivity over Bacillus subtilis ATCC 6633 induced by introduction of a bulky aryl substituent at the 5-position of the core scaffolds. (C) 2012 Elsevier Ltd. All rights reserved.