摘要:
                                Oxidation-reduction reactions necessary to justify many of the products observed in Maillard model systems are usually attributed to molecular oxygen and the so-called reductons. The proline specific 1-(1'-pyrrolidinyl)-2-propanone and 1-(1'-pyrrolidinyl)-2-butanone are such compounds that require reduction steps to justify their formation. Experimental evidence using glucose separately labeled at (13)C1, (13)C2, (13)C3, (13)C4, (13)C5,,and (13)C6 indicates that 1-(1'-pyrrolidinyl)-2-propanone is formed by two related pathways, initiated by a retro-aldol cleavage of proline Amadori compound at C3-C4, and 1-(1'-pyrrolidinyl)-2-butanone is formed by three pathways, one initiated by a retro-aldol reaction at C2-C3 of the 1-(prolino)-1-deoxy-4-hexosulose (an isomer of Amadori product formed by carbonyl migration) and two others by similar retro-aldol reactions at C4-C5 from both 3-deoxyglucosone and 1-(prolino)-1,4-dideoxy-2,3-hexodiulose. All of the proposed mechanisms require reduction steps for the formation of the target compounds. Model studies have indicated that reductions in Maillard systems can be effected by three pathways: through hydride transfer from formic acid; through cyclic dimerization of alpha-hydroxy carbonyl compounds followed by electrocyclic ring opening to produce oxidation/reduction products; and by disproportionation of enediols with alpha-dicarbonyl compounds through double proton transfer.