Stabilized Vesicles Consisting of Small Amphiphiles for Stepwise Photorelease via UV Light
摘要:
A small amphiphile consisting of hydrophilic tetraethylene glycol monoacrylate and hydrophobic alkyl chain which were connected by an o-nitrobenzyl unit, a photolabile group, was designed and synthesized. The critical aggregate concentration of the synthesized amphiphile was determined to be about 3 x 10(-5) M by the fluorescence probe technique. Nanosized vesicles were prepared and stabilized by in-situ radical polymerization without altering the morphology. The polymeric vesicle was highly stable which retained vesicular shape under dilution or UV irradiation. Hydrophobic guests can be encapsulated within the vesicle membrane and released out of the vesicle by UV stimulus through splitting the amphiphilic structure of the amphiphile. Distinguished dose-controlled photorelease of the polymeric vesicle is achieved due to the maintenance of the vesicular shape integrity which makes the guest release depend on the cleavage amount of amphiphilic structure during UV irradiation. This study provides a promising strategy to develop stable drug delivery systems for sustained and phototriggered release.
Stabilized Vesicles Consisting of Small Amphiphiles for Stepwise Photorelease via UV Light
摘要:
A small amphiphile consisting of hydrophilic tetraethylene glycol monoacrylate and hydrophobic alkyl chain which were connected by an o-nitrobenzyl unit, a photolabile group, was designed and synthesized. The critical aggregate concentration of the synthesized amphiphile was determined to be about 3 x 10(-5) M by the fluorescence probe technique. Nanosized vesicles were prepared and stabilized by in-situ radical polymerization without altering the morphology. The polymeric vesicle was highly stable which retained vesicular shape under dilution or UV irradiation. Hydrophobic guests can be encapsulated within the vesicle membrane and released out of the vesicle by UV stimulus through splitting the amphiphilic structure of the amphiphile. Distinguished dose-controlled photorelease of the polymeric vesicle is achieved due to the maintenance of the vesicular shape integrity which makes the guest release depend on the cleavage amount of amphiphilic structure during UV irradiation. This study provides a promising strategy to develop stable drug delivery systems for sustained and phototriggered release.
Stabilized Vesicles Consisting of Small Amphiphiles for Stepwise Photorelease via UV Light
作者:Jianming Dong、Yi Zeng、Zhiqing Xun、Yongbin Han、Jinping Chen、Ying-Ying Li、Yi Li
DOI:10.1021/la203829d
日期:2012.1.24
A small amphiphile consisting of hydrophilic tetraethylene glycol monoacrylate and hydrophobic alkyl chain which were connected by an o-nitrobenzyl unit, a photolabile group, was designed and synthesized. The critical aggregate concentration of the synthesized amphiphile was determined to be about 3 x 10(-5) M by the fluorescence probe technique. Nanosized vesicles were prepared and stabilized by in-situ radical polymerization without altering the morphology. The polymeric vesicle was highly stable which retained vesicular shape under dilution or UV irradiation. Hydrophobic guests can be encapsulated within the vesicle membrane and released out of the vesicle by UV stimulus through splitting the amphiphilic structure of the amphiphile. Distinguished dose-controlled photorelease of the polymeric vesicle is achieved due to the maintenance of the vesicular shape integrity which makes the guest release depend on the cleavage amount of amphiphilic structure during UV irradiation. This study provides a promising strategy to develop stable drug delivery systems for sustained and phototriggered release.