Structure-guided design of substituted aza-benzimidazoles as potent hypoxia inducible factor-1α prolyl hydroxylase-2 inhibitors
摘要:
We report the structure-based design and synthesis of a novel series of aza-benzimidazoles as PHD2 inhibitors. These efforts resulted in compound 22, which displayed highly potent inhibition of PHD2 function in vitro. (C) 2008 Elsevier Ltd. All rights reserved.
Structure−Activity Relationships for 1-Phenylbenzimidazoles as Selective ATP Site Inhibitors of the Platelet-Derived Growth Factor Receptor
摘要:
1-Phenylbenzimidazoles are shown to be a new class of ATP-site inhibitors of the platelet-derived growth factor receptor (PDGFR). Structure-activity relationships (SARs) are narrow, with closely related heterocycles being inactive. A systematic study of substituted 1-phenyl-benzimidazoles showed clear SARs. Substituents at the 4'- and 3'-positions of the phenyl ring are tolerated but do not significantly improve activity, while substituents at the 2'-position abolish it. Substituents in the 2-, 4-, and 7-positions of the benzimidazole ring (with the exception of 4-OH) also abolish activity. Most substituents at the 5- and B-positions maintain or increase activity, with the 5-OH, 5-OMe, 5-COMe, and 5-CO2Me analogues being >10-fold more potent than the parent 1-phenylbenzimidazole. The 5-OMe analogue was both the most potent inhibitor, and showed the highest selectivity (50-fold) between PDGFR and FGFR isolated enzymes, and also a moderately effective inhibitor (IC50 = 1.9 mu M) of PDGF-stimulated PDGFR autophosphorylation in rat aorta smooth muscle cells.