摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-hydroxyanthranilate | 1074-80-2

中文名称
——
中文别名
——
英文名称
3-hydroxyanthranilate
英文别名
2-Amino-3-hydroxybenzoate;2-amino-3-carboxyphenolate
3-hydroxyanthranilate化学式
CAS
1074-80-2
化学式
C7H6NO3
mdl
——
分子量
152.13
InChiKey
WJXSWCUQABXPFS-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.6
  • 重原子数:
    11
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    86.4
  • 氢给体数:
    2
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    描述:
    3-hydroxyanthranilate 在 3-hydroxyanthranilate 3,4-dioxygenase N27A mutant 、 氧气 作用下, 以 aq. buffer 为溶剂, 生成 (2Z)-2-氨基-3-[(1Z)-3-氧代-1-丙烯-1-基]-2-丁烯二酸
    参考文献:
    名称:
    Adapting to oxygen: 3-Hydroxyanthrinilate 3,4-dioxygenase employs loop dynamics to accommodate two substrates with disparate polarities
    摘要:
    3-Hydroxyanthranilate 3,4-dioxygenase (HAO) is an iron-dependent protein that activates O-2 and inserts both oxygen atoms into 3-hydroxyanthranilate (3-HAA). An intriguing question is how HAO can rapidly bind O-2, even though local O-2 concentrations and diffusion rates are relatively low. Here, a close inspection of the HAO structures revealed that substrate- and inhibitor-bound structures exhibit a closed conformation with three hydrophobic loop regions moving toward the catalytic iron center, whereas the ligand-free structure is open. We hypothesized that these loop movements enhance O-2 binding to the binary complex of HAO and 3-HAA. We found that the carboxyl end of 3-HAA triggers changes in two loop regions and that the third loop movement appears to be driven by an H-bond interaction between Asn(27) and Ile(142). Mutational analyses revealed that N27A, I142A, and I142P variants cannot form a closed conformation, and steady-state kinetic assays indicated that these variants have a substantially higher K-m for O-2 than WT HAO. This observation suggested enhanced hydrophobicity at the iron center resulting from the concerted loop movements after the binding of the primary substrate, which is hydrophilic. Given that O-2 is nonpolar, the increased hydrophobicity at the iron center of the binary complex appears to be essential for rapid O-2 binding and activation, explaining the reason for the 3-HAA-induced loop movements. Because substrate binding-induced open-to-closed conformational changes are common, the results reported here may help further our understanding of how oxygen is enriched in nonheme iron-dependent dioxygenases.
    DOI:
    10.1074/jbc.ra118.002698
  • 作为产物:
    参考文献:
    名称:
    Crystal Structure of Homo sapiens Kynureninase,
    摘要:
    Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
    DOI:
    10.1021/bi0616697
点击查看最新优质反应信息

文献信息

  • Structural Studies on 3-Hydroxyanthranilate-3,4-dioxygenase:  The Catalytic Mechanism of a Complex Oxidation Involved in NAD Biosynthesis<sup>,</sup>
    作者:Yang Zhang、Keri L. Colabroy、Tadhg P. Begley、Steven E. Ealick
    DOI:10.1021/bi047353l
    日期:2005.5.1
    tryptophan to quinolinate, the universal de novo precursor to the pyridine ring of nicotinamide adenine dinucleotide. The enzyme requires Fe2+ as a cofactor and is inactivated by 4-chloro-3-hydroxyanthranilate. HAD from Ralstonia metallidurans was crystallized, and the structure was determined at 1.9 A resolution. The structures of HAD complexed with the inhibitor 4-chloro-3-hydroxyanthranilic acid and either
    3-羟基邻氨基苯甲酸酯-3,4-二加氧酶(HAD)催化从色酸到喹啉酸酯(烟酰胺腺嘌呤二核苷酸吡啶环的通用前体)的生物合成途径的最终酶促步骤中3-羟基邻氨基苯甲酸的氧化环打开。该酶需要Fe2 +作为辅助因子,并被4-氯-3-羟基邻氨基苯甲酸灭活。使来自Ralstonia metallidurans的HAD结晶,并以1.9 A的分辨率确定其结构。与抑制剂4-氯-3-羟基邻氨基苯甲酸和分子氧或一氧化氮络合的HAD的结构在2.0 A分辨率下测定,与3-羟基邻氨基苯甲酸酯络合物的HAD的结构在3.2 A分辨率下测定。HAD是具有亚单位拓扑的同型二聚体,具有亚桶折叠的特征。每个单体包含两个结合位点。催化被His51,Glu57和His95用作配体,被深埋在β桶内。另一个位点形成一个靠近溶剂表面的FeS4中心,其中原子由Cys125,Cys128,Cys162和Cys165提供。两个位点之
  • Characterization of the anthranilate degradation pathway in Geobacillus thermodenitrificans NG80-2
    作者:Xueqian Liu、Yangpeng Dong、Xiaomin Li、Yi Ren、Yanxia Li、Wei Wang、Lei Wang、Lu Feng
    DOI:10.1099/mic.0.031880-0
    日期:2010.2.1

    Anthranilate is an important intermediate of tryptophan metabolism. In this study, a hydroxylase system consisting of an FADH2-utilizing monooxygenase (GTNG_3160) and an FAD reductase (GTNG_3158), as well as a bifunctional riboflavin kinase/FMN adenylyltransferase (GTNG_3159), encoded in the anthranilate degradation gene cluster inGeobacillus thermodenitrificansNG80-2 were functionally characterizedin vitro. GTNG_3159 produces FAD to be reduced by GTNG_3158 and the reduced FAD (FADH2) is utilized by GTNG_3160 to convert anthranilate to 3-hydroxyanthranilate (3-HAA), which is further degraded to acetyl-CoA through ameta-cleavage pathway also encoded in the gene cluster. Utilization of this pathway for the degradation of anthranilate and tryptophan by NG80-2 under physiological conditions was confirmed by real-time RT-PCR analysis of representative genes. This is believed to be the first time that the degradation pathway of anthranilate via 3-HAA has been characterized in a bacterium. This pathway is likely to play an important role in the survival ofG. thermodenitrificansin the oil reservoir conditions from which strain NG80-2 was isolated.

    Anthranilate是色酸代谢的重要中间体。在这项研究中,位于Geobacillus thermodenitrificans NG80-2的anthranilate降解基因簇中编码的一个由FAD还原酶(GTNG_3158)和一个FADH2利用单加氧酶(GTNG_3160)组成的羟化酶系统,以及一个双功能核黄素激酶/FMN腺苷酰转移酶(GTNG_3159)在体外进行了功能特性描述。GTNG_3159产生FAD,被GTNG_3158还原,而还原的FAD(FADH2)被GTNG_3160利用,将anthranilate转化为3-羟基anthranilate(3-HAA),后者通过基因簇中编码的meta-断裂途径进一步降解为乙酰辅酶A。通过代表性基因的实时RT-PCR分析,证实了NG80-2在生理条件下利用此途径降解anthranilate和色酸。这被认为是第一次在细菌中表征了通过3-HAA的anthranilate降解途径。这条途径很可能在NG80-2分离的油藏条件下发挥重要作用,有助于其生存。
  • Fawaz F.; Jones G.H., J Biol Chem, 1988, 0021-9258, 4602-6
    作者:Fawaz F.、Jones G.H.
    DOI:——
    日期:——
  • Crystal structure of 3-hydroxyanthranilic acid 3,4-dioxygenase from Saccharomyces cerevisiae: A special subgroup of the type III extradiol dioxygenases
    作者:X. Li
    DOI:10.1110/ps.051967906
    日期:——
    Abstract3‐Hydroxyanthranilic acid 3,4‐dioxygenase (3HAO) is a non‐heme ferrous extradiol dioxygenase in the kynurenine pathway from tryptophan. It catalyzes the conversion of 3‐hydroxyanthranilate (HAA) to quinolinic acid (QUIN), an endogenous neurotoxin, via the activation of N‐methyl‐D‐aspartate (NMDA) receptors and the precursor of NAD+ biosynthesis. The crystal structure of 3HAO from S. cerevisiae at 2.4 Å resolution shows it to be a member of the functionally diverse cupin superfamily. The structure represents the first eukaryotic 3HAO to be resolved. The enzyme forms homodimers, with two nickel binding sites per molecule. One of the bound nickel atoms occupies the proposed ferrous‐coordinated active site, which is located in a conserved double‐strand β‐helix domain. Examination of the structure reveals the participation of a series of residues in catalysis different from other extradiol dioxygenases. Together with two iron‐binding residues (His49 and Glu55), Asp120, Asn51, Glu111, and Arg114 form a hydrogen‐bonding network; this hydrogen‐bond network is key to the catalysis of 3HAO. Residues Arg101, Gln59, and the substrate‐binding hydrophobic pocket are crucial for substrate specificity. Structure comparison with 3HAO from Ralstonia metallidurans reveals similarities at the active site and suggests the same catalytic mechanism in prokaryotic and eukaryotic 3HAO. Based on sequence comparison, we suggest that bicupin of human 3HAO is the first example of evolution from a monocupin dimer to bicupin monomer in the diverse cupin superfamilies. Based on the model of the substrate HAA at the active site of Y3HAO, we propose a mechanism of catalysis for 3HAO.
  • Malherbe P.; Kohler C.; da Prada M., J Biol Chem, 1994, 0021-9258, 13792-7
    作者:Malherbe P.、Kohler C.、da Prada M.、Lang G.、Kiefer V.、Schwarcz R.、Lahm H.、Cesura A.M.
    DOI:——
    日期:——
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫