摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-chloro-5-iodo-2-(pivaloylamino)-7-[(2,3,5-tri-O-benzoyl)-β-D-ribofuranosyl]-7H-pyrrolo[2,3-d]pyrimidine | 873792-67-7

中文名称
——
中文别名
——
英文名称
4-chloro-5-iodo-2-(pivaloylamino)-7-[(2,3,5-tri-O-benzoyl)-β-D-ribofuranosyl]-7H-pyrrolo[2,3-d]pyrimidine
英文别名
[(2R,3R,4R,5R)-3,4-dibenzoyloxy-5-[4-chloro-2-(2,2-dimethylpropanoylamino)-5-iodopyrrolo[2,3-d]pyrimidin-7-yl]oxolan-2-yl]methyl benzoate
4-chloro-5-iodo-2-(pivaloylamino)-7-[(2,3,5-tri-O-benzoyl)-β-D-ribofuranosyl]-7H-pyrrolo[2,3-d]pyrimidine化学式
CAS
873792-67-7
化学式
C37H32ClIN4O8
mdl
——
分子量
823.041
InChiKey
GXULCSACUUGEPZ-QWOIFIOOSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 密度:
    1.56±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    7.7
  • 重原子数:
    51
  • 可旋转键数:
    13
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.24
  • 拓扑面积:
    148
  • 氢给体数:
    1
  • 氢受体数:
    10

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    参考文献:
    名称:
    7-Functionalized 7-Deazapurine Ribonucleosides Related to 2-Aminoadenosine, Guanosine, and Xanthosine:  Glycosylation of Pyrrolo[2,3-d]pyrimidines with 1-O-Acetyl-2,3,5-tri-O-benzoyl-d-ribofuranose
    摘要:
    The Silyl-Hilbert-Johnson reaction as well as the nucleobase-anion glycosylation of a series of 7-deazapurines has been investigated, and the 7-functionalized 7-deazapurine ribonucleosides were prepared. Glycosylation of the 7-halogenated 6-chloro-2-pivaloylamino-7-deazapurines 9b-d with 1-O-acetyl2,3,5-tri-O-benzOyl-D-ribofuranose (5) gave the beta-D-nucleosides 11b-d (73-75% yield), which were transformed to a number of novel 7-halogenated 7-deazapurine ribonucleosides (2b-d, 3b-d, and 4b-d) related to guanosine, 2-aminoadenosine, and xanthosine. 7-Alkynyl derivatives (2e-i, 3e-h, or 4g) have been prepared from the corresponding 7-iodonucleosides 2d, 3d, or 4d employing the palladium-catalyzed Sonogashira cross-coupling reaction. The 7-halogenated 2-amino-7-deazapurine ribonucleosides with a reactive 6-chloro substituent (18b-d) were synthesized in an alternative way using nucleobase-anion glycosylation performed on the 7-halogenated 2-arnino-6-chloro-7-deazapurines 13b-d with 5-0-[(1,1dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-alpha-D-ribofuranosyl chloride (17). Compounds 18b-d have been converted to the nucleosides 19b-d carrying reactive substituents in the pyrimidine moiety. Conformational analysis of selected nucleosides on the basis of proton coupling constants and using the program PSEUROT showed that these ribonucleosides exist in a preferred S conformation in solution.
    DOI:
    10.1021/jo0516640
  • 作为产物:
    参考文献:
    名称:
    7-Functionalized 7-Deazapurine Ribonucleosides Related to 2-Aminoadenosine, Guanosine, and Xanthosine:  Glycosylation of Pyrrolo[2,3-d]pyrimidines with 1-O-Acetyl-2,3,5-tri-O-benzoyl-d-ribofuranose
    摘要:
    The Silyl-Hilbert-Johnson reaction as well as the nucleobase-anion glycosylation of a series of 7-deazapurines has been investigated, and the 7-functionalized 7-deazapurine ribonucleosides were prepared. Glycosylation of the 7-halogenated 6-chloro-2-pivaloylamino-7-deazapurines 9b-d with 1-O-acetyl2,3,5-tri-O-benzOyl-D-ribofuranose (5) gave the beta-D-nucleosides 11b-d (73-75% yield), which were transformed to a number of novel 7-halogenated 7-deazapurine ribonucleosides (2b-d, 3b-d, and 4b-d) related to guanosine, 2-aminoadenosine, and xanthosine. 7-Alkynyl derivatives (2e-i, 3e-h, or 4g) have been prepared from the corresponding 7-iodonucleosides 2d, 3d, or 4d employing the palladium-catalyzed Sonogashira cross-coupling reaction. The 7-halogenated 2-amino-7-deazapurine ribonucleosides with a reactive 6-chloro substituent (18b-d) were synthesized in an alternative way using nucleobase-anion glycosylation performed on the 7-halogenated 2-arnino-6-chloro-7-deazapurines 13b-d with 5-0-[(1,1dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-alpha-D-ribofuranosyl chloride (17). Compounds 18b-d have been converted to the nucleosides 19b-d carrying reactive substituents in the pyrimidine moiety. Conformational analysis of selected nucleosides on the basis of proton coupling constants and using the program PSEUROT showed that these ribonucleosides exist in a preferred S conformation in solution.
    DOI:
    10.1021/jo0516640
点击查看最新优质反应信息

文献信息

  • Synthesis of Galactosyl‐Queuosine and Distribution of Hypermodified Q‐Nucleosides in Mouse Tissues
    作者:Peter Thumbs、Timm T. Ensfelder、Markus Hillmeier、Mirko Wagner、Matthias Heiss、Constanze Scheel、Alexander Schön、Markus Müller、Stylianos Michalakis、Stefanie Kellner、Thomas Carell
    DOI:10.1002/anie.202002295
    日期:2020.7.20
    report a total synthesis of the hypermodified nucleoside galactosyl‐queuosine (galQ). The availability of the compound enabled us to study the absolute levels of the Q‐family nucleosides in six different organs of newborn and adult mice, and also in human cytosolic tRNA. Our synthesis now paves the way to a more detailed analysis of the biological function of the Q‐nucleoside family.
    Queuosine(Q)是一种高度修饰的RNA核苷,存在于tRNA His,tRNA Asn,tRNA Tyr和tRNA Asp中。它位于tRNA反密码子环的摆动位置,在这里它可以与位于相应mRNA密码子各自位置的U以及C碱基相互作用。在tRNA Tyr和tRNA Asp中在包括人类在内的高等真核生物中,由于未知的原因,分别通过添加半乳糖甘露糖糖进一步修饰了Q碱基。尚不清楚这种额外修饰的原因,以及如何通过Q的形成和插入来协调糖的修饰。在这里,我们报告了高度修饰的核苷半乳糖奎宁(galQ)的总合成。该化合物的可用性使我们能够研究新生和成年小鼠的六个不同器官以及人胞质tRNA中Q族核苷的绝对平。现在,我们的合成为Q-核苷家族的生物学功能的更详细分析铺平了道路。
  • Genetic Code Expansion Facilitates Position‐Selective Labeling of RNA for Biophysical Studies
    作者:Andreas Hegelein、Diana Müller、Sylvester Größl、Michael Göbel、Martin Hengesbach、Harald Schwalbe
    DOI:10.1002/chem.201904623
    日期:2020.2.6
    synthesizing the genetic code with high fidelity. Nucleic acid building blocks that are orthogonal to the canonical A‐T and G‐C base‐pairs are therefore uniquely suitable to facilitate position‐specific labeling of nucleic acids. Here, we employ the orthogonal kappa‐xanthosine‐base‐pair for in vitro transcription of labeled RNA. We devised an improved synthetic route to obtain the phosphoramidite of the
    大自然依赖于高保真度地读取和合成遗传密码。因此,与规范的 A-T 和 G-C 碱基对正交的核酸构件特别适合促进核酸的位置特异性标记。在这里,我们使用正交 kappa-黄苷碱基对进行标记 RNA 的体外转录。我们设计了一种改进的合成路线,在固相合成中获得 kappa 核苷脱氧形式的亚酰胺。通过该 DNA 模板,我们证明了体外转录过程中黄嘌呤核苷的可靠掺入。使用核磁共振波谱法,我们表明黄嘌呤核苷仅在 RNA 螺旋中引入微小的结构变化。我们还合成了一种可点击的 7-脱氮黄苷,它允许用荧光团或其他标签对转录的 RNA 分子进行位点特异性修饰。
  • Glycosylation of Pyrrolo[2,3-<i>d</i>]pyrimidines with 1-<i>O</i>-Acetyl-2,3,5-tri-<i>O</i>-benzoyl-β-<scp>d</scp>-ribofuranose: Substituents and Protecting Groups Effecting the Synthesis of 7-Deazapurine Ribonucleosides
    作者:Sachin A. Ingale、Peter Leonard、Frank Seela
    DOI:10.1021/acs.joc.8b00343
    日期:2018.8.3
    synthesis of 7-deazaguanosine employing pivaloylated 2-amino-6-chloro-7-deazapurine gave 18% glycosylation yield. The less bulky isobutyryl or acetyl protected amino group directed the glycosylation toward the exocyclic amino substituent. 7-Halogenated intermediates were glycosylated followed by dehalogenation to overcome the low glycosylation yield in the synthesis of 7-deazaguanosine.
    非官能化的6--7-脱氮嘌呤与市售的1 - O-乙酰基-2,3,5-三-O-苯甲酰基-β - d-呋喃呋喃糖(45%)进行糖基化,然后胺化和脱保护,仅得到两种形式的结核菌素脚步。应用类似的条件,采用吡咯烷基化的2-基-6--7-脱氮嘌呤合成7-脱氮鸟嘌呤,可以得到18%的糖基化产率。较小体积的异丁酰基或乙酰基保护的基将糖基化指向环外基取代基。将7-卤代中间体糖基化,然后脱卤以克服7-脱氮鸟苷合成中低糖基化产率。
  • An Efficient Synthesis Of 7-Functionalized 7-Deazapurine β-D- Or β-L-Ribonucleosides: Glycosylation Of Pyrrolo[2,3-D]Pyrimidines With 1-O-Acetyl-2,3,5-Tri-O-Benzoyl-D-Or L-Ribofuranose
    作者:Xiaohua Peng、Frank Seela
    DOI:10.1080/15257770701490332
    日期:2007.11.26
    The glycosylation reaction performed with 7-halogenated 7-deazapurines employing commercially available 1-O-acetyl-2,3,5-tri-O-benzoyl-D- or L-ribofuranoses is described.
    描述了使用可商购的1-O-乙酰基-2,3,5-三-O-苯甲酰基-D-或L-呋喃呋喃糖酶用7-卤代7-脱氮嘌呤进行的糖基化反应。
  • Synthesis of the Transfer-RNA Nucleoside Queuosine by Using a Chiral Allyl Azide Intermediate
    作者:Florian Klepper、Eva-Maria Jahn、Volker Hickmann、Thomas Carell
    DOI:10.1002/anie.200604579
    日期:2007.3.19
查看更多

同类化合物

聚(7-去氮杂鸟苷酸) 羧鸟苷霉素 硫代桑吉瓦霉素 桑霉素 核苷Q 杀结核菌素5'-三磷酸酯 杀结核菌素-5'-二磷酸酯 杀结核菌素 木糖基杀结核菌素 乙酰腈,羰基[(2-噻嗯基亚甲基)肼基<联氨基>]-(9CI) [3,4-二乙酰氧基-5-(5-氧代-2,4,9-三氮杂双环[4.3.0]壬-3,7,10-三烯-9-基)四氢呋喃-2-基]甲基乙酸酯 N4-环丙基-7-(2-C-甲基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶-2,4-二胺 7-脱氮水粉蕈素 7-脱氮-2'-C-乙炔腺苷 7-溴-9-[3,4-二羟基-5-(羟基甲基)四氢呋喃-2-基]-2,4,9-三氮杂双环[4.3.0]壬-3,7,10-三烯-5-酮 7-去氮杂肌苷 7-去氮-AMP 7-{5-O-[二甲基(2-甲基-2-丙基)硅烷基]-2,3-O-异亚丙基-beta-D-来苏呋喃糖基}-4-甲氧基-7H-吡咯并[2,3-d]嘧啶-2-胺 7-beta-D-阿拉伯呋喃糖基-7H-吡咯并[2,3-d]嘧啶-4-胺 7-[3,5-二-O-[(2,4-二氯苯基)甲基]-2-C-甲基-beta-D-呋喃核糖基]-4-氯-7H-吡咯并[2,3-d]嘧啶-2-胺 7-[3,5-二-O-[(2,4-二氯苯基)甲基]-2-C-甲基-beta-D-呋喃核糖基]-4-氯-7H-吡咯并[2,3-d]嘧啶 7-[3,5-二-O-[(2,4-二氯苯基)甲基]-2-C-甲基-beta-D-呋喃核糖基]-4-氯-5-碘-7H-吡咯并[2,3-d]嘧啶 7-[3,5-二-O-[(2,4-二氯苯基)甲基]-2-C-甲基-beta-D-呋喃核糖基]-4-氯-5-甲基-7H-吡咯并[2,3-d]嘧啶 7-(beta-D-来苏呋喃糖基)-4-甲氧基-7H-吡咯并[2,3-d]嘧啶-2-胺 7-(2-C-甲基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶-4-胺 6-氯-9-(beta-D-呋喃核糖基)-7-脱氮嘌呤 5-碘代杀结核菌素 5-碘-7-(2-C-甲基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶-4-胺 5-甲基-7-(2-C-甲基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶-4-胺 5-溴杀结核菌素 5-氯杀结核菌素 5-(甲氧羰基)杀结核菌素 4-氯-7-{5-O-[二甲基(2-甲基-2-丙基)硅烷基]-2,3-O-异亚丙基-beta-D-来苏呋喃糖基}-7H-吡咯并[2,3-d]嘧啶-2-胺 4-氯-7-(2-C-甲基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶-2-胺 4-氯-7-(2-C-甲基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶 4-氯-7-(2-C-乙炔基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶 4-氯-7-(2,3,5-三-O-乙酰基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶 4-氯-5-碘-7-(beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶-2-胺 4-氯-5-碘-7-(2-C-甲基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶 4-氯-5-碘-7-(2-C-甲基-BETA-D-呋喃核糖基)-7H-吡咯并[2,3-D]嘧啶-2-胺 4-氯-5-甲基-7-(2-C-甲基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶 4-氨基-7-beta-D-呋喃核糖基-7H-吡咯并[2,3-d]嘧啶-5-甲醇 4-氨基-7-(2-C-甲基-beta-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶-5-甲腈 4-氨基-6-氯-7-[3,4-二羟基-5-(羟基甲基)四氢呋喃-2-基]吡咯并[5,4-d]嘧啶-5-甲酰胺 4-氨基-5-氰基-7-(beta-d-呋喃核糖)吡咯并[2,3-d]嘧啶 4-(甲基硫烷基)-7-(5-O-磷羧基五呋喃糖基)-7H-吡咯并[2,3-d]嘧啶 3-氨基脱氮腺苷二氯铂(II) 2-氨基-7-[(2R,3R,4S,5R)-3,4-二羟基-5-(羟基甲基)四氢呋喃-2-基]-4-氧代-1H-吡咯并[4,5-e]嘧啶-5-甲脒 2-氨基-1,7-二氢-7-beta-D-呋喃核糖基-4H-吡咯并[2,3-d]嘧啶-4-酮 (S)-4-氨基-6-溴-7-((3R,4S,5R)-3,4-二羟基-5-羟基甲基-四氢-呋喃-2-基)-7,7alpha-二氢-4aH-吡咯并[2,3-d]嘧啶-5-甲腈