,3,5-triazine); thus, allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2
与先前探索的概念(
MOF = 常数;客体 = 变量)相比,首次探讨了通过改变框架孔径(
金属有机框架 (
MOF) = 变量;客体 = 常数)的光物理可调性。特别是,对集成 Cl-BI(5-(3-
氯亚
苄基)-2,3-二
甲基-3,5-二
氢-
4H-咪唑-4-one)发色团光物理响应的限制效应分析使我们能够建立光物理-孔径关系。为了阐明观察到的相关性,使用分子笼 Pd6(
TPT)4 (
TPT =
2,4,6-tri(pyridin-4-yl)-1,3,5-triazine)复制了框架受限环境; 因此,允许利用晶体学、光谱学、和理论模拟,以揭示密闭空间对发色团分子构象(包括强
氢键的破坏和新的构象异构体形成)的影响以及对光物理响应的任何相关变化。此外,所选的 Cl-oHBI@Pd6(
TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3