摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-azido-1,3,5-trinitrohexahydropyrimidine | 1256363-79-7

中文名称
——
中文别名
——
英文名称
5-azido-1,3,5-trinitrohexahydropyrimidine
英文别名
5-Azido-1,3,5-trinitro-1,3-diazinane;5-azido-1,3,5-trinitro-1,3-diazinane
5-azido-1,3,5-trinitrohexahydropyrimidine化学式
CAS
1256363-79-7
化学式
C4H6N8O6
mdl
——
分子量
262.142
InChiKey
PAVLYMJLEMVZHF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.77
  • 重原子数:
    18.0
  • 可旋转键数:
    4.0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    184.66
  • 氢给体数:
    0.0
  • 氢受体数:
    7.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    5-azido-1,3-di-tert-butyl-5-nitrohexahydropyrimidine五氧化二氮 作用下, 以 乙腈 为溶剂, 以11%的产率得到5-azido-1,3,5-trinitrohexahydropyrimidine
    参考文献:
    名称:
    杂环孪生硝基叠氮化物的合成
    摘要:
    研究了C-硝基取代的饱和杂环化合物的氧化叠氮化反应,即氧杂环丁烷、氮杂环丁烷、1,3-二恶烷、四氢-1,3-恶嗪和六氢嘧啶的硝基衍生物。制备了一种新型的孪生硝基叠氮化物的代表物并研究了它们的理化性质。分析了氧化叠氮化形成孪生二硝基化合物的过程。
    DOI:
    10.1007/s11172-009-0323-9
点击查看最新优质反应信息

文献信息

  • Synthesis and properties of azamonocyclic energetic materials with geminal explosophores
    作者:Kaidi Yang、Fuqiang Bi、Qi Xue、Huan Huo、Chao Bai、Junlin Zhang、Bozhou Wang
    DOI:10.1039/d1dt00581b
    日期:——
    Diversity-oriented synthesis of energetic pyrimidine structures with geminal explosophoric groups of geminal dinitro and azido-nitro groups via a novel reductive cleavage and oxidative coupling strategy is reported. Fluorine has also been introduced for the first time based on the nucleophilic coupling process. The obtained energetic pyrimidines are investigated via X-ray diffraction and theoretical
    报道了通过新颖的还原裂解和化偶合策略,以双歧化的双硝基和叠氮基-硝基的双分子炸药基团为导向的高能嘧啶结构的多样性合成。也是基于亲核偶联过程首次引入的。通过X射线衍射以及静电势和质子亲和力计算的理论技术研究获得的高能嘧啶。实验和计算结果均显示出令人印象深刻的爆炸性能,以及高能嘧啶结构的良好应用前景。其中,DNNC作为固体推进剂配方中的绿色化剂替代高氯酸铵(AP)具有广阔的前景。TNHA(ρ= 1.79 g cm -3,D = 8537 ms -1,P = 32.69 Gpa)和TNHF(ρ = 1.85 g cm -3,D = 8517 ms -1,P = 32.64 Gpa)被证明是高炸药的理想选择由于它们的高密度和爆炸特性。此外,TNHA由于其巨大的地层热量,也可以用作潜在的下炸药。
查看更多