Antagonists of the human CCR5 receptor as anti-HIV-1 agents. Part 2: structure–activity relationships for substituted 2-aryl-1-[ N -(methyl)- N -(phenylsulfonyl)amino]-4-(piperidin-1-yl)butanes
Synthesis and structure–antifungal activity Relationships of 3-Aryl-5-alkyl-2,5-dihydrofuran-2-ones and Their Carbanalogues: further refinement of tentative pharmacophore group
摘要:
Two series of 3-(substituted phenyl)-5-alkyl-2,5-dihydrofuran-2-ones related to a natural product, (-)incrustoporine, were synthesized and their in vitro antifungal activity evaluated. The compounds with halogen substituents on the phenyl ring exhibited selective antifungal activity against the filamentous strains of Absidia corymbifera and Aspergillus fumigatus. On the other hand, the influence of the lenghth of the alkyl chain at C(5) was marginal. The antifungal effect of the most active compound against the above strains was higher than that of ketoconazole, and close to that of amphotericin B. In order to verify the hypothesis about a possible relationship between the Michael-accepting ability of the compounds and their antifungal activity, a series of simple carbanalogues, 2-(substituted phenyl)cyclopent-2-enones, was prepared and subjected to antifungal activity assay as well. (C) 2003 Elsevier Science Ltd. All rights reserved.
developed via the oxidative umpolung of bromide using alkali metal bromide and inorganic oxidant to provide the corresponding cyclization products in high yields. In particular, the use of AcOEt, the solvent of choice for green sustainable reactions, led to the high reactivities of the present reactions. This methodology is highly recommended for green sustainable chemistry because it uses stable and non-hazardous