摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

碳酸氢钠 | 144-55-8

中文名称
碳酸氢钠
中文别名
小苏打;重碳酸钠;重曹;重碱;培碱;酸式碳酸钠
英文名称
sodium hydrogencarbonate
英文别名
NaHCO3;Sodium bicarbonate;aqueous NaHCO3;aqueous sodium bicarbonate;aqueous sodium hydrogen carbonate;Sodium hydrogenocarbonate;sodium hydrocarbonate;sodium bisulfite;baking soda;sodium;hydrogen carbonate
碳酸氢钠化学式
CAS
144-55-8
化学式
CHNaO3
mdl
——
分子量
84.0069
InChiKey
UIIMBOGNXHQVGW-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    >300 °C(lit.)
  • 沸点:
    851°C
  • 密度:
    2.16 g/mL at 25 °C (lit.)
  • 溶解度:
    H2O:1 Mat 20 °C,透明,无色
  • LogP:
    -4.010 (est)
  • 物理描述:
    Sodium bicarbonate appears as odorless white crystalline powder or lumps. Slightly alkaline (bitter) taste. pH (of freshly prepared 0.1 molar aqueous solution): 8.3 at 77°F. pH (of saturated solution): 8-9. Non-toxic.
  • 颜色/状态:
    White, monoclinic prisms
  • 气味:
    Odorless
  • 味道:
    Cooling, slightly alkaline taste
  • 稳定性/保质期:
    - 常温常压下稳定。 - 禁配物:强氧化剂、强酸。
  • 分解:
    Sodium bicarbonate starts decomposing when heated over 50 °C, releasing CO2, H2O and Na2CO3, with total decomposition at 270 °C.
  • 折光率:
    Refractive indices: 1.380, 1.500, 1.586

计算性质

  • 辛醇/水分配系数(LogP):
    -4.11
  • 重原子数:
    5
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    60.4
  • 氢给体数:
    1
  • 氢受体数:
    3

ADMET

代谢
过度使用可能会导致动物全身性碱中毒,但身体通常会分解碳酸氢盐根成为水和二氧化碳...
Excessive use can cause systemic alkalosis /in animals/, but body usually splits bicarbonate radical into water and carbon dioxide ...
来源:Hazardous Substances Data Bank (HSDB)
代谢
碳酸氢钠与盐酸迅速反应生成氯化钠、二氧化碳和水;未能中和胃酸的过量碳酸氢钠会快速排入小肠并被吸收。
Sodium bicarbonate rapidly reacts with hydrochloric acid to form sodium chloride, carbon dioxide, and water; excess bicarbonate that does not neutralize gastric acid rapidly empties into the small intestine and is absorbed.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
碳酸氢钠是一种白色结晶粉末或颗粒。它用于制造许多钠盐,作为二氧化碳的来源,作为发酵粉、起泡盐和饮料的成分,在灭火器、清洁剂中使用。它还用于分析化学中调节pH值。在美国,它还用于水产养殖中作为鱼的麻醉剂。碳酸氢钠用于治疗与多种疾病相关的代谢性酸中毒。它还用于兽医医学。人体研究:急性口服碳酸氢钠摄入和慢性摄入的风险包括代谢性碱中毒、高钠血症、高血压、胃破裂、低肾素血症、低钾血症、低氯血症、血管内血容量减少和尿液碱化。慢性过量碳酸氢钠摄入的突然停止可能导致高钾血症、低醛固酮血症、血容量减少以及钙和磷代谢的紊乱。在正常健康志愿者获得的新鲜人全血中研究了碳酸氢钠的抗凝作用。凝血酶原和凝血酶凝血时间的测定表明,碳酸氢钠可能会干扰凝血过程。动物研究:碳酸氢钠对兔眼有刺激性。在兔皮肤上测试时,有轻微刺激性。评估了碳酸氢钠的致畸效应,最大剂量水平如下:小鼠580 mg/kg;大鼠340 mg/kg;兔330 mg/kg。在这些物种中没有发现任何影响。在沙门氏菌/微体试验中,使用代谢激活的沙门氏菌伤寒菌株TA 92、TA 94、TA 98、TA 100、TA 1535和TA 1537评估了碳酸氢钠的诱变性,结果为阴性。生态毒性研究:一些组织学异常,包括坏死细胞发生率的增加,表明鱼类在暴露于>450 mg NaHCO3/L时受到了不利影响。
IDENTIFICATION AND USE: Sodium bicarbonate is a white crystalline powder or granules. It is used in manufacturing many sodium salts, as a source of carbon dioxide, ingredient of baking powder, and effervescent salts and beverages, in fire extinguishers, cleaning compounds. It is also used in analytical chemistry for pH adjustment. It is used in aquaculture as an anesthetic for fish in the United States. Sodium bicarbonate is used in the treatment of metabolic acidosis associated with many conditions. It is also used in veterinary medicine. HUMAN STUDIES: Risks of acute and chronic oral bicarbonate ingestion include metabolic alkalosis, hypernatremia, hypertension, gastric rupture, hyporeninemia, hypokalemia, hypochloremia, intravascular volume depletion, and urinary alkalinization. Abrupt cessation of chronic excessive bicarbonate ingestion may result in hyperkalemia, hypoaldosteronism, volume contraction, and disruption of calcium and phosphorus metabolism. The anticoagulant effects of sodium bicarbonate was investigated in fresh human whole blood obtained from normal healthy volunteers. Prothrombin and thrombin clotting time determination indicated that bicarbonate can interfere with the clotting process. ANIMAL STUDIES: Sodium bicarbonate was irritating to the rabbit eye. It was slightly irritating when tested on the skin of rabbits. Sodium bicarbonate was evaluated for teratological effects, maximum dose levels were as follows: mice, 580 mg/kg; rats, 340 mg/kg; and rabbits, 330 mg/kg. No effects were found in any of these species. The mutagenicity of sodium bicarbonate was assessed in Salmonella/microsome assays using Salmonella typhimurium strains TA 92, TA 94, TA 98, TA 100, TA 1535 and TA 1537 with metabolic activation, and it was negative. ECOTOXICITY STUDIES: Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 药物性肝损伤
化合物:碳酸氢钠
Compound:sodium bicarbonate
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
DILI 注释:无 DILI(药物性肝损伤)担忧
DILI Annotation:No-DILI-Concern
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
标签部分:无匹配
Label Section:No match
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
参考文献:M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. FDA-批准的药物标签用于研究药物诱导的肝损伤,《药物发现今天》,16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007 M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank: 按照在人类中发展药物诱导肝损伤风险排名的最大参考药物清单。《药物发现今天》2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015
References:M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. FDA-Approved Drug Labeling for the Study of Drug-Induced Liver Injury, Drug Discovery Today, 16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007 M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today 2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
吸收、分配和排泄
消除:通过肾脏;形成的二氧化碳通过肺部排出。
Elimination: Renal; carbon dioxide formed is eliminated via lungs.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
过量的碳酸氢钠会迅速排入小肠,在那里被吸收。
Excess sodium bicarbonate is emptied rapidly into small intestine where it is absorbed.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
它主要在尿液中排出,并有效地使尿液碱化。... 它可以完全口服吸收,通常在3-4小时内排出体外。
It is eliminated principally in the urine and effectively alkalizes it. ... /It/ is completely absorbed orally and usually is excreted within 3-4 hr.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
口服:起效时间:迅速;持续时间:8-10分钟。静脉注射:起效时间:15分钟;持续时间:1-2小时。
Oral: Onset of action: Rapid; Duration: 8-10 minutes. I.V: Onset of action: 15 minutes; duration: 1-2 hours.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • TSCA:
    Yes
  • 安全说明:
    S24/25
  • WGK Germany:
    1
  • 海关编码:
    2836300000
  • 危险品运输编号:
    NONH for all modes of transport
  • RTECS号:
    VZ0950000
  • 包装等级:
    Z01
  • 储存条件:
    1. 贮存于通风、干燥的库房内,并且在储运过程中要注意防潮,避免与碱类物质接触。同时,应储存于阴凉、干燥、通风的仓库内。

SDS

SDS:76ee24b50363c29ccb585efa57f1f0e2
查看
第一部分:化学品名称
化学品中文名称: 碳酸氢钠
化学品英文名称: Sodium bicarbonate
中文俗名或商品名:
Synonyms:
CAS No.: 144-55-8
分子式: 无资料
分子量: 无资料
第二部分:成分/组成信息
纯化学品 混合物
化学品名称:碳酸氢钠
有害物成分 含量 CAS No.
碳酸氢钠 100 144-55-8
第三部分:危险性概述
危险性类别:
侵入途径: 无资料
健康危害: 碳酸氢钠在常温下是接近中性的极微弱的碱, 如将其固体或水溶液加热 50℃以上时,可转变为碳酸钠,对人具有刺激性和腐蚀性,对眼睛、皮肤及呼吸道粘膜有刺激性,引起炎症。
环境危害: 无资料
燃爆危险: 本品不燃。
第四部分:急救措施
皮肤接触: 脱去污染的衣着,用大量流动清水冲洗。
眼睛接触: 提起眼睑,用流动清水或生理盐水冲洗。就医。
吸入: 脱离现场至空气新鲜处。如呼吸困难,给输氧。就医。
食入: 饮足量温水,催吐。就医。
第五部分:消防措施
危险特性: 受热分解。未有特殊的燃烧爆炸特性。
有害燃烧产物: 二氧化碳
灭火方法及灭火剂: 尽可能将容器从火场移至空旷处。
消防员的个体防护: 无资料
禁止使用的灭火剂: 无资料
闪点(℃): 无资料
自燃温度(℃): 无资料
爆炸下限[%(V/V)]: 无资料
爆炸上限[%(V/V)]: 无资料
最小点火能(mJ):
爆燃点:
爆速:
最大燃爆压力(MPa):
建规火险分级:
第六部分:泄漏应急处理
应急处理: 隔离泄漏污染区,限制出入。建议应急处理人员戴防尘面具(全面罩),穿一般作业工作服。避免扬尘,小心扫起,置于袋中转移至安全场所。若大量泄漏,用塑料布、帆布覆盖。收集回收或运至废物处理场所处置。
第七部分:操作处置与储存
操作注意事项: 密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜。避免产生粉尘。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备泄漏应急处理设备。倒空的容器可能残留有害物。
储存注意事项: 储存于阴凉、干燥、通风良好的库房。远离火种、热源。保持容器密封。应与氧化剂、酸类分开存放,切忌混储。储区应备有合适的材料收容泄漏物。
第八部分:接触控制/个体防护
最高容许浓度: 无资料
监测方法: 无资料
工程控制: 生产过程密闭,加强通风。
呼吸系统防护: 空气中粉尘浓度较高时,建议佩戴自吸过滤式防尘口罩
眼睛防护: 戴化学安全防护眼镜。
身体防护: 穿一般作业防护服。
手防护: 戴一般作业防护手套。
其他防护: 及时换洗工作服。保持良好的卫生习惯。
第九部分:理化特性
外观与性状: 白色、有微咸味、粉末或结晶体。
pH:
熔点(℃): 270
沸点(℃): 无资料
相对密度(水=1): 2.16
相对蒸气密度(空气=1): 无资料
饱和蒸气压(kPa):
燃烧热(kJ/mol):
临界温度(℃):
临界压力(MPa):
辛醇/水分配系数的对数值:
闪点(℃): 无资料
引燃温度(℃): 无资料
爆炸上限%(V/V): 无资料
爆炸下限%(V/V): 无资料
分子式: 无资料
分子量: 无资料
蒸发速率:
粘性:
溶解性: 无资料
主要用途: 分析化学用试剂, 镀金、镀铂、鞣革、处理羊毛、丝、灭火剂、医药消化剂等, 也用作乳油保存剂、木材防熏剂。
第十部分:稳定性和反应活性
稳定性: 在常温常压下
禁配物: 强氧化剂、强酸。
避免接触的条件: 潮湿空气。
聚合危害: 无资料
分解产物: 无资料
第十一部分:毒理学资料
急性毒性: LD50:4220 mg/kg(大鼠经口) LC50:无资料
急性中毒: 无资料
慢性中毒: 无资料
亚急性和慢性毒性:
刺激性: 无资料
致敏性:
致突变性:
致畸性:
致癌性:
第十二部分:生态学资料
生态毒理毒性: 无资料
生物降解性: 无资料
非生物降解性: 无资料
生物富集或生物积累性:
第十三部分:废弃处置
废弃物性质: 无资料
废弃处置方法: 处置前应参阅国家和地方有关法规。中和后,用安全掩埋法处置。
废弃注意事项: 无资料
第十四部分:运输信息
危险货物编号: 无资料
UN编号: 无资料
包装标志:
包装类别:
包装方法: 无资料
运输注意事项: 起运时包装要完整,装载应稳妥。运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。严禁与氧化剂、酸类等混装混运。运输途中应防曝晒、雨淋,防高温。
RETCS号:
IMDG规则页码:
第十五部分:法规信息
国内化学品安全管理法规: 化学危险物品安全管理条例 (1987年2月17日国务院发布),化学危险物品安全管理条例实施细则 (化劳发[1992] 677号),工作场所安全使用化学品规定 ([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定。
国际化学品安全管理法规:
第十六部分:其他信息
参考文献:
填表时间: 2005年1月12日
填表部门: 无资料
数据审核单位: 无资料
修改说明: 无资料
其他信息:
MSDS修改日期: 1900年1月1日

制备方法与用途

根据您提供的信息,我可以总结出碳酸氢钠(小苏打)的主要用途和生产方法:

主要用途:
  1. 食品工业:作为发酵剂、汽水和冷饮中二氧化碳的发生剂、黄油的保存剂。
  2. 制药行业:用作制药工业的原料。
  3. 医疗领域:治疗酸血症。
  4. 农业:用于羊毛的洗涤、泡沫灭火剂、浴用剂等。
  5. 工业应用:用于电影制片、鞣革、选矿、冶金、纤维、橡胶等。
生产方法:
  1. 气液相法:将纯碱溶解过滤,与二氧化碳进行碳化反应生成碳酸氢钠。
  2. 气固相法:通过碳酸钠与二氧化碳在反应床中反应生成碳酸氢钠。
  3. 废碱液回收法:利用生产过程中的废碱液经过碳化、离心分离和干燥制得产品。
  4. 天然碱加工法:以天然碱为原料,经过滤除渣后与二氧化碳进行碳化反应得到成品。
特性与注意事项:
  • 毒性分级:中毒
  • 急性毒性:口服大鼠 LD50 4220 毫克/公斤;小鼠 LD50: 3360 毫克/公斤
  • 可燃性危险特性:不可燃烧,但受热会放出有毒的氧化钠气体。
  • 储运特性:库房应保持低温、通风和干燥。

希望这些信息对您有所帮助!如果您还有其他具体问题,请随时告知。

反应信息

  • 作为反应物:
    描述:
    碳酸氢钠 在 HCl 作用下, 以 not given 为溶剂, 生成 sodium chloride
    参考文献:
    名称:
    Bodlaender; Breull, Angewandte Chemie, 1901, vol. 14, p. 381 - 381
    摘要:
    DOI:
  • 作为产物:
    描述:
    sodium oxalate 以 为溶剂, 生成 碳酸氢钠
    参考文献:
    名称:
    Scholder, R.; Linstroem, C. F., Berichte der Deutschen Chemischen Gesellschaft, 1930, vol. 63, p. 2730 - 2737
    摘要:
    DOI:
  • 作为试剂:
    描述:
    劳森试剂potassium phosphate 、 (2-dicyclohexylphosphino-2’,4’,6’-triisopropyl-1,1 ‘-biphenyl)[2-(2’-amino-1,1‘-biphenyl)]palladium(II) methanesulfonate 、 碳酸氢钠N,N-二异丙基乙胺三氟乙酸 、 N-[(dimethylamino)-3-oxo-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl-methylene]-N-methylmethanaminium hexafluorophosphate 作用下, 以 四氢呋喃二氯甲烷 为溶剂, 反应 33.5h, 生成
    参考文献:
    名称:
    Tapcin, an In Vivo Active Dual Topoisomerase I/II Inhibitor Discovered by Synthetic Bioinformatic Natural Product (Syn‐BNP)‐Coupled Metagenomics
    摘要:
    Abstract

    DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products. Mining the untapped chemical diversity encoded by soil microbiomes presents an opportunity to identify additional natural topoisomerase inhibitors. Here we couple metagenome mining, bioinformatic structure prediction algorithms, and chemical synthesis to produce the dual topoisomerase inhibitor tapcin. Tapcin is a mixed p‐aminobenzoic acid (PABA)‐thiazole with a rare tri‐thiazole substructure and picomolar antiproliferative activity. Tapcin reduced colorectal adenocarcinoma HT‐29 cell proliferation and tumor volume in mouse hollow fiber and xenograft models, respectively. In both studies it showed similar activity to the clinically used topoisomerase I inhibitor irinotecan. The study suggests that the interrogation of soil microbiomes using synthetic bioinformatic natural product methods has the potential to be a rewarding strategy for identifying potent, biomedically relevant, antiproliferative agents.

    DOI:
    10.1002/anie.202317187
点击查看最新优质反应信息

文献信息

  • Acetylenic &agr;-amino acid-based sulfonamide hydroxamic acid tace inhibitors
    申请人:American Cyanamid Company
    公开号:US06225311B1
    公开(公告)日:2001-05-01
    Compounds of the formula: are useful in treating disease conditions mediated by TNF-&agr;, such as rheumatoid arthritis, osteoarthritis, sepsis, AIDS, ulcerative colitis, multiple sclerosis, Crohn's disease and degenerative cartilage loss.
    该式化合物在治疗由TNF-α介导的疾病条件中很有用,如类风湿性关节炎、骨关节炎、败血症、艾滋病、溃疡性结肠炎、多发性硬化症、克罗恩病和软骨退行性损失。
  • PYRIMIDINE NUCLEUS-CONTAINING COMPOUND AND A MEDICAMENT CONTAINING THE SAME FOR A BLOOD OXYGEN PARTIAL PRESSURE AMELIORATION, AND A METHOD FOR PREPARING THE SAME
    申请人:——
    公开号:US20010006969A1
    公开(公告)日:2001-07-05
    A pyrimidine nucleus-containing compound represented by the formula (I): 1 wherein ring A represents the ring of the formula (a): 2 in which R 1 is a nitro group, an amino group, a substituted amino group or a halogen atom, or the ring of the formula (b) 3 in which R 1′ is the group such as an alkyl group or an alkenyl group; R 2 to R 5 independently represent the group such as an alkyl group or an alkenyl group; with the proviso that at least one of R 2 to R 5 is an alkenyl group, or acid addition salts thereof.
    化合物的中心含有嘧啶核,其化学式表示为(I): 其中环A代表化学式(a)的环: 其中R1是硝基、氨基、取代氨基或卤素原子,或者是化学式(b)的环: 其中R1'是诸如烷基或烯基等基团;R2到R5独立地代表诸如烷基或烯基等基团;但至少R2到R5中的一个是烯基,或其酸盐。
  • Stereospecific production of 6- or 7-carbon-substituted-.beta.-lactams
    申请人:Schering Corporation
    公开号:US04237051A1
    公开(公告)日:1980-12-02
    Reaction of 6- or 7-diazo-.beta.-lactams with allylic halides in the presence of a catalytic amount of metallic copper or a copper salt affords 6- or 7-carbon-substituted-.beta.-lactams with the desired stereochemical configuration at the 6- or 7-position. Subsequent reduction with a trialkyl stannane affords useful intermediates for further syntheses affording 6- or 7-carbon-substituted-.beta.-lactams. The present invention relates to a process for the production of 6- or 7-carbon-substituted-.beta.-lactams having the desired stereochemical configuration at the 6- or 7-position. More particularly, this invention provides a process for the preparation of a .beta.-lactam of the formula ##STR1## wherein R.sub.1 is cyano or COOR.sub.2 wherein R.sub.2 is a readily removable ester-forming moiety, hydrogen or an alkali-metal cation; R.sub.3 and R.sub.4 are independently hydrogen, lower alkyl, aryl or aralkyl; Z is a group of the formula ##STR2## wherein R.sub.5 is hydrogen, lower alkyl or aralkyl; and the dotted line indicates the optional presence of a double bond; which comprises (1) reacting a diazo-.beta.-lactam of the formula ##STR3## wherein Y is a sulfur or an oxygenated sulfur atom and Z, R.sub.1, R.sub.3, and R.sub.4 are as hereinbefore defined; with an allyl halide of the formula ##STR4## wherein R.sub.3 and R.sub.4 are as hereinbefore defined and X is bromo or iodo; in the presence of a catalytic amount of metallic copper or a copper salt; and where Y is an oxygenated sulfur atom, followed by transformation of the resultant oxygenated sulfur intermediate to a compound wherein Y is a sulfur atom; and (2) subjecting the resultant intermediate of the formula ##STR5## wherein X, Z, R.sub.1, R.sub.3, and R.sub.4 are as hereinabove defined, to reduction with a trialkyl stannane to afford the compound of formula I. The lower alkyl groups referred to contain 1 to 6 carbon atoms and are exemplified by methyl, ethyl, propyl, butyl, pentyl, hexyl and the corresponding branched-chain isomers thereof. The lower alkoxy groups referred to above likewise contain 1 to 6 carbon atoms and are exemplified by methoxy, ethoxy, propoxy, and the like. The term "aryl" as used herein refers to phenyl substituted by one or more substituent groups selected from among chloro, bromo, fluoro, lower alkyl, hydroxy, nitro, amino, aminomethyl, lower monoalkylamino, lower dialkylamino, lower alkoxy and carboxy. Such aryl groups represented by R.sub.1 can be, for example, 4-hydroxyphenyl, 3,4-dichlorophenyl, 2,6-dimethoxyphenyl, 4-methylphenyl, 2-fluorophenyl, 4-carboxyphenyl, 3-nitrophenyl, 4-aminophenyl, 3-aminophenyl, 4-dimethylaminophenyl, 4-aminomethylphenyl and 4-ethoxyphenyl. The term "aralkyl" encompasses aryl-substituted lower alkyl groups such as benzyl, phenethyl, p-fluorobenzyl, o-tolylethyl and m-hydroxy-phenethyl. The process of this invention initially involves the reaction of a diazo-.beta.-lactam of formula II and the allyl halide of formula III in the presence of a catalytic amount of metallic copper or a copper salt to induce the decomposition of the diazo-.beta.-lactam at temperatures of about 0.degree.-50.degree. C. to provide the intermediate of formula IV. The diazo-.beta.-lactam utilizable in this step of the invention may be any type of readily removable ester-blocked acid, i.e., the compound of formula II wherein R.sub.1 is COOR.sub.2 or a nitrile, i.e., the compound of formula II wherein R.sub.1 is cyano. Preferably, benzyl or benzhydryl esters are employed in the reaction wherein R.sub.1 is COOR.sub.2. The starting materials of formula II wherein Y is oxygenated sulfur are preferred due to the stability of the starting compound. However, the reaction using the equivalent sulfide also proceeds with good yields and avoids the need for a subsequent deoxygenation step. The allyl halides of formula III utilizable in the present invention are those wherein the halogen is iodine or bromine with iodine being most particularly preferred. The allyl halide of formula III may be substituted by lower alkyl, aryl or aralkyl groups. Those compounds wherein R.sub.3 and R.sub.4 are methyl or phenyl are preferred. The copper compound utilizable as a catalyst for this step of the instant invention may be almost any copper salt or finely divided elemental copper. Preferably, 1-10 mole percent of the copper or copper salt is utilized. The most preferred catalysts are cuprous chloride and copper (II)-2,4-pentanedioate. In order to maximize the yield for this step of the instant invention, it is preferable to use a large excess of the allyl halide of formula III. Most preferably, allyl bromide or allyl iodide is used as the reaction medium. Substituted allyl halides of formula III are preferably diluted with a non-polar co-solvent such as methylene chloride. Polar solvents may also be used, e.g., dimethylformamide, dimethylsulfoxide or acetonitrile, but these provide poorer yields. The reaction is preferably carried out at room temperature; however, depending on the nature of the starting materials, the reaction temperatures may range from about 0.degree. to 50.degree. C. Occasionally, warming to about 40.degree. C. is utilized to initiate the reaction which is then continued without further heating. The stereochemistry at C-6 or C-7 of the intermediate of formula IV is generally a mixture of alpha and beta compounds. Generally, use of the bromides gives a higher ratio of beta to alpha compounds, i.e., 5 to 6:1. Use of the iodides gives more approximately equal amounts of the alpha and beta isomers. The reduction of step 2 to afford the cis product of formula I is accomplished using trialkyl stannane (trialkyl tin hydride). Preferably, tri-n-butyl stannane is utilized. The intermediate of formula IV is heated at about 60.degree.-100.degree. C. with 1-2 equivalents of the tin hydride in an inert solvent. Preferred solvents are tetrahydrofuran, benzene and toluene. Typically, the product is separated by chromatography in yields of greater than 80%. The compounds of formula II wherein Y is an oxygenated sulfur atom may be obtained from the corresponding compounds wherein Y is sulfur by any of the conventional oxidation procedures, e.g., ozone, iodobenzene dichloride in aqueous pyridine, etc. An oxygenated sulfur penicillin compound, i.e., wherein Z is ##STR6## may then be converted to the corresponding cephalosporin, i.e., wherein Y is S and Z is ##STR7## by various literature methods. See, for instance, Flynn, "Cephalosporins and Penicillins", Academic Press, pp. 193-199 and 670-673 (1972). By such methods benzyl 6.beta.-allyl-6.alpha.-bromopenicillanate-1.beta.-oxide may be converted to benzyl 7.beta.-allyl-6.alpha.-bromo-3-methyl-3-cephem-4-carboxylate. The sulfoxide compound is also particularly useful wherein it is desired to convert a mixture of 2- and 3-cephem compounds to a pure 3-cephem compound. The 6- or 7-diazo starting materials of formula II are preparable via a variety of literature methods or variations thereof. A preferred method involves degradation of the penicillin or cephalosporin side chain via the N-nitroso derivative as described by Hausler and Sigg, Helv. Chim. Acta., 1327 (1967); and Sheehan, J. Org. Chem., 39, 1444 (1974). This process involves treatment of the penicillin or cephalosporin, e.g., benzylpenicillin benzyl ester or benzhydryl ester, to form the N-nitroso derivative, followed by decomposition of the nitroso amide side chain with methylene chloride-pyridine or methylene chloride at about 40.degree. C. to afford the diazo compound. An improvement of this process, omitting the pyridine and allowing the reaction to proceed at room temperature in a polar solvent, e.g., dimethylsulfoxide or dimethylformamide, affords a cleaner reaction and better conversion, i.e., >90%. This reaction sequence may be represented by the following scheme: ##STR8## wherein Y, Z and R.sub.1 are as hereinbefore defined. Preferable by this route are the following: benzyl 6-diazopenicillanate; benzhydryl 6-diazopenicillanate; 6-diazopenicillanonitrile; and benzyl 7-diazo-3-methylcephalosporanate. Another modification of the decomposition step in the preparation of the starting materials of formula II is to utilize triphenylphosphine and water in place of the methylene chloride and pyridine according to the method of Sheehan, J. Org. Chem., 42, 1012 ( 1977) to afford the hydrazone of the formula: ##STR9## Oxidation of this hydrazone by the method of U.S. Pat. No. 3,880,837 affords the desired diazo compound. This route is particularly preferred for the cephalosporin starting materials of this invention. Preparable by this route are the following: benzhydryl 7-diazo-3-methylcephalosporinate; benzhydryl 7-diazo-3-acetoxymethylcephalosporinate; and benzhydryl 6-diazopenicillanate. An additional method for preparing the 6- or 7-diazo compounds of formula II involves diazotisation of the corresponding amino compounds using nitrous acid according to the procedure originally carried out by Hausler and Sigg, Helv. Chim. Acta., 1327 (1967) and further delineated in J. Amer. Chem. Soc., 94, 1408 (1972) and J. Org. Chem., 41, 1578 (1976). Once prepared, the compounds of formula I are utilizable to prepare various 6- or 7-substituted-.beta.-lactams having useful antimicrobial activity, many of which are known in the art. For instance, ozonolysis of 6.beta.-(allyl)penicillanonitrile, benzyl 6.beta.-(allyl)penicillanate or benzhydryl 6.beta.-allylpenicillanate affords 6.beta.-(formylmethyl)-penicillanonitrile, benzyl 6.beta.-(formylmethyl)penicillanate and benzhydryl 6.beta.-(formylmethyl)penicillanate, respectively. This ozonolysis is carried out according to standard methodology. The aldehyde obtained by the ozonolysis described in the preceding paragraph may then be subjected to reduction utilizing a mild reducing agent such as sodium borohydride to afford the corresponding alcohol. For instance, obtainable by this reaction is 6.beta.-(2-hydroxyethyl)penicillanonitrile, benzyl 6.beta.-(2-hydroxyethyl)penicillanate and benzhydryl 6.beta.-(2-hydroxyethyl)penicillanate. The ester group of the preceding two compounds may, of course, be removed utilizing standard hydrogenolysis typically with a palladium catalyst to afford the resulting free acids. Workup with a weak base, e.g., potassium carbonate or sodium carbonate, will afford the potassium or sodium salts, e.g., potassium 6.beta.-(2-hydroxyethyl)penicillanate or sodium 6.beta.-(2-hydroxyethyl)penicillanate. Oxidation of the aldehydes obtainable by the ozonolysis procedure affords the corresponding carboxylic acids. For instance, benzhydryl 6.beta.-(formylmethyl)penicillanate treated with chromic acid in acetone and water affords benzhydryl 6.beta.-(carboxymethyl)penicillanate. Reaction of the foregoing carboxylic acids with suitable azides provides various homo-penicillanates. For instance, benzhydryl 6.beta.-(carboxymethyl)penicillanate treated with diphenylphosphoryl azide and triethylamine at a reaction temperature of about 80.degree. C. according to the method of Ninomiya, et. al., Chem. Pharm. Bull. Japan, 22, 1398 (1974), affords benzhydryl 6.beta.-(carbonylaminomethyl)penicillanate which is typically not isolated. Treatment of this intermediate with the desired acid or alcohol provides homopenicillanates which then may be optionally deblocked. Obtainable in this method are potassium 6.beta.-(phenylacetamidomethyl)penicillanate and potassium 6.beta.-(ethoxycarbonylaminomethyl)penicillanate. Treatment of benzhydryl 6.beta.-(carbonylaminomethyl)penicillanate with trichloroethanol followed by a zinc/acetic acid reduction affords benzhydryl 6.beta.-(aminomethyl)penicillanate. Conventional deblocking of this compound then affords 6.beta.-(aminomethyl)penicillanic acid. Several of the foregoing compounds are described by Sheehan, et. al. as having useful and interesting antimicrobial activity in German Pat. Nos. 2,416,492 and 2,643,085. However, 6.beta.-(aminomethyl)penicillanic acid has not heretofore been described in any publication and is therefore a novel compound. The 6.beta.-(aminomethyl)penicillanic acid produced by the process of this invention possesses antibacterial activity. Additionally, it is a penicillinase inhibitor which may be used concomitantly with other penicillin-type antibiotics in infection therapy. Thus, when tested in standardized microbiological assays, this compound exhibits activity vis-a-vis such organisms as Staphylococcus aureus, Klebsiella, Bacillus subtilis, and Pseudomonas aeruginosa at test levels of 0.1 to 100 .mu.cg/ml. Thus, as antibacterial agents this compound is conventionally formulated for oral, intramuscular, intravenous or topical therapy. Thus, the present invention includes within its scope pharmaceutical compositions comprising an antibacterially effective amount of the novel 6.beta.-(aminomethyl)penicillanic acid with a compatible pharmaceutical carrier therefor, and a method of using such compositions for the treatment of microbial infections. The dosage administered of this compound is dependent upon the age and weight of the animal species being treated, the mode of administration, and the type and severity of bacterial infection being prevented or reduced. Typically, the dosage administered per day will be in the range of 100-5000 mg with 500-1000 mg being preferred. For oral administration, this compound may be formulated in the form of tablets, capsules, elixirs or the like. For parenteral administration it may be formulated into solutions or suspensions for intramuscular injection. Topical formulations include creams, ointments, gels and the like.
    在微量金属铜或铜盐的催化下,6-或7-重氮-.beta.-内酰胺与烯丙基卤化物的反应,可得到在6-或7位具有所需立体化学配置的6-或7-碳取代-.beta.-内酰胺。随后使用三烷基锡烷进行还原,可得到适用于进一步合成6-或7-碳取代-.beta.-内酰胺的有用中间体。本发明涉及一种生产在6-或7位具有所需立体化学配置的6-或7-碳取代-.beta.-内酰胺的方法。更具体地,本发明提供了一种制备具有以下公式的.beta.-内酰胺的方法: ##STR1## 其中R1是氰基或COOR2,其中R2是易于移除的酯形成基团、氢或碱金属阳离子;R3和R4独立地为氢、低级烷基、芳基或芳烷基;Z是具有以下公式的基团: ##STR2## 其中R5是氢、低级烷基或芳烷基;虚线表示双键的可选存在;该方法包括:(1)将具有以下公式的重氮-.beta.-内酰胺: ##STR3## 其中Y是硫或氧化的硫原子,Z、R1、R3和R4如前所述;与具有以下公式的烯丙基卤化物反应: ##STR4## 其中R3和R4如前所述,X是溴或碘;在微量金属铜或铜盐的存在下;当Y是氧化的硫原子时,随后将所得的氧化的硫中间体转化为Y为硫原子的化合物;以及(2)将具有以下公式的所得中间体: ##STR5## 其中X、Z、R1、R3和R4如前所述,进行还原,使用三烷基锡烷得到公式I的化合物。所提及的低级烷基含有1至6个碳原子,例如甲基、乙基、丙基、丁基、戊基、己基及其相应的支链异构体。所提及的低级烷氧基同样含有1至6个碳原子,例如甲氧基、乙氧基、丙氧基等。术语“芳基”如本文所用,指的是被一个或多个选自氯、溴、氟、低级烷基、羟基、硝基、氨基、氨基甲基、低级单烷基氨基、低级二烷基氨基、低级烷氧基和羧基的取代基团取代的苯基。代表R1的此类芳基可以是例如4-羟基苯基、3,4-二氯苯基、2,6-二甲氧基苯基、4-甲基苯基、2-氟苯基、4-羧基苯基、3-硝基苯基、4-氨基苯基、3-氨基苯基、4-二甲基氨基苯基、4-氨基甲基苯基和4-乙氧基苯基。术语“芳烷基”包括被芳基取代的低级烷基基团,如苄基、苯乙基、对氟苄基、邻甲苯乙基和间羟基苯乙基。本发明的过程首先涉及在微量金属铜或铜盐的存在下,将公式II的重氮-.beta.-内酰胺与公式III的烯丙基卤化物反应,以在约0°至50°C的温度下诱导重氮-.beta.-内酰胺的分解,提供公式IV的中间体。在本发明这一步骤中可用的重氮-.beta.-内酰胺可以是任何类型的易于移除的酯阻断酸,即公式II的化合物,其中R1是COOR2或腈,即公式II的化合物,其中R1是氰基。优选地,在R1是COOR2的反应中使用苄基或二苄基酯。由于起始化合物的稳定性,公式II的起始材料,其中Y是氧化的硫,是优选的。然而,使用等效硫化物的反应也以良好的产率进行,并避免了随后的脱氧步骤的需要。在本发明中可用的公式III的烯丙基卤化物是那些卤素为碘或溴的,其中碘是最特别优选的。公式III的烯丙基卤化物可以被低级烷基、芳基或芳烷基基团取代。那些R3和R4为甲基或苯基的化合物是优选的。在本发明这一步骤中可用的铜化合物可以是几乎任何铜盐或细分的金属铜。优选地,使用1-10摩尔百分比的铜或铜盐。最优选的催化剂是氯化亚铜和铜(II)-2,4-戊二酸酯。为了最大化本发明这一步骤的产率,优选使用大量过量的公式III的烯丙基卤化物。最优选地,作为反应介质使用烯丙基溴或烯丙基碘。公式III的取代烯丙基卤化物优选地用非极性共溶剂如二氯甲烷稀释。也可以使用极性溶剂,例如二甲基甲酰胺、二甲基亚砜或乙腈,但这些提供较差的产率。反应优选在室温下进行;然而,根据起始材料的性质,反应温度可以从约0°到50°C。偶尔,加热到约40°C以启动反应,然后在没有进一步加热的情况下继续进行。公式IV的中间体在C-6或C-7的立体化学通常是α和β化合物的混合物。一般来说,使用溴化物给出β到α化合物的更高比例,即5到6:1。使用碘化物给出α和β异构体更接近相等的量。步骤2的还原以得到公式I的顺式产物是通过使用三烷基锡烷(三烷基锡烷氢化物)完成的。优选地,使用三正丁基锡烷。将公式IV的中间体在约60°至100°C下与1-2当量的锡烷在惰性溶剂中加热。优选的溶剂是四氢呋喃、苯和甲苯。通常,产品通过色谱法分离,产率超过80%。公式II的化合物,其中Y是氧化的硫原子,可以通过任何常规氧化程序从相应的Y为硫的化合物获得,例如臭氧、碘苯二氯化物在水性吡啶中等。氧化的硫青霉素化合物,即Z为: ##STR6## 可以然后通过各种文献方法转换为相应的头孢菌素,即Y为S且Z为: ##STR7## 例如,参见Flynn,“头孢菌素和青霉素”,学术出版社,第193-199页和670-673页(1972)。通过这些方法,苄基6.β.-烯丙基-6.α.-溴青霉烷酸-1.β.-氧化物可以转换为苄基7.β.-烯丙基-6.α.-溴-3-甲基-3-头孢-4-羧酸酯。当希望将2-和3-头孢化合物混合物转换为纯3-头孢化合物时,亚砜化合物也特别有用。公式II的6-或7-重氮起始材料可以通过各种文献方法或其变体制备。优选的方法涉及通过N-亚硝基衍生物描述的青霉素或头孢菌素侧链的降解,如Hausler和Sigg,Helv. Chim. Acta.,1327(1967);以及Sheehan,J. Org. Chem.,39,1444(1974)。该过程涉及处理青霉素或头孢菌素,例如苄基青霉素苄基酯或二苄基酯,形成N-亚硝基衍生物,然后在大约40°C的甲基氯仿-吡啶或甲基氯仿中分解亚硝基酰胺侧链,得到重氮化合物。对该过程的改进,省略了吡啶并允许反应在极性溶剂如二甲基亚砜或二甲基甲酰胺中在室温下进行,提供了更清洁的反应和更好的转换,即>90%。该反应序列可以由以下方案表示: ##STR8## 其中Y、Z和R1如前所述。通过这条路线优选的是以下:苄基6-重氮青霉烷酸酯;二苄基6-重氮青霉烷酸酯;6-重氮青霉烷腈;和苄基7-重氮-3-甲基头孢菌酸酯。在制备公式II的起始材料的分解步骤的另一种修改是使用三苯基膦和水代替甲基氯仿和吡啶,根据Sheehan的方法,J. Org. Chem.,42,1012(1977),得到具有以下公式的肼: ##STR9## 根据美国专利第3,880,837号方法氧化此踪可得到所需的重氮化合物。此路线特别适用于本发明中的头孢菌素起始原料。通过此路线可制备以下物质:苯并二氢吡喃-7-重氮-3-甲基头孢菌酸酯;苯并二氢吡喃-7-重氮-3-乙酰氧甲基头孢菌酸酯;以及苯并二氢吡喃-6-重氮青霉烷酸酯。制备公式II中6-或7-重氮化合物的另一种方法涉及使用亚硝酸对相应氨基化合物进行重氮化,该方法最初由Hausler和Sigg在Helv. Chim. Acta.,1327 (1967)中描述,并在J. Amer. Chem. Soc.,94,1408 (1972)和J. Org. Chem.,41,1578 (1976)中进一步详细说明。一旦制备完成,公式I中的化合物可用于制备各种6-或7-取代的β-内酰胺,这些化合物具有有用的抗微生物活性,其中许多已为业界所知。例如,6.β.-(烯丙基)青霉烷腈、苄基6.β.-(烯丙基)青霉烷酸酯或苯并二氢吡喃-6.β.-烯丙基青霉烷酸酯的臭氧化反应分别产生6.β.-(甲酰甲基)青霉烷腈、苄基6.β.-(甲酰甲基)青霉烷酸酯和苯并二氢吡喃-6.β.-(甲酰甲基)青霉烷酸酯。此臭氧化反应按照标准方法进行。前述段落中描述的臭氧化反应得到的醛可以通过使用如硼氢化钠等温和还原剂还原,得到相应的醇。例如,通过此反应可得到6.β.-(2-羟乙基)青霉烷腈、苄基6.β.-(2-羟乙基)青霉烷酸酯和苯并二氢吡喃-6.β.-(2-羟乙基)青霉烷酸酯。前述两种化合物中的酯基当然可以通过标准氢解(通常使用钯催化剂)去除,得到相应的自由酸。使用弱碱(如碳酸钾或碳酸钠)处理,将得到钾盐或钠盐,例如钾6.β.-(2-羟乙基)青霉烷酸酯或钠6.β.-(2-羟乙基)青霉烷酸酯。通过臭氧化反应得到的醛的氧化可以得到相应的羧酸。例如,苯并二氢吡喃-6.β.-(甲酰甲基)青霉烷酸酯在丙酮和水中用铬酸处理,得到苯并二氢吡喃-6.β.-(羧甲基)青霉烷酸酯。上述羧酸与适当的叠氮化物反应可以提供各种同型青霉烷酸酯。例如,苯并二氢吡喃-6.β.-(羧甲基)青霉烷酸酯在约80°C的反应温度下,按照Ninomiya等人(Chem. Pharm. Bull. Japan,22,1398 (1974))的方法,与二苯基磷酰叠氮和三乙胺反应,得到苯并二氢吡喃-6.β.-(羰基氨基甲基)青霉烷酸酯,该中间体通常不进行分离。将此中间体与所需的酸或醇反应,得到同型青霉烷酸酯,然后可以进行选择性脱保护。通过此方法可得到钾6.β.-(苯乙酰氨基甲基)青霉烷酸酯和钾6.β.-(乙氧羰基氨基甲基)青霉烷酸酯。苯并二氢吡喃-6.β.-(羰基氨基甲基)青霉烷酸酯与三氯乙醇反应后,通过锌/乙酸还原,得到苯并二氢吡喃-6.β.-(氨基甲基)青霉烷酸酯。对此化合物进行常规脱保护,得到6.β.-(氨基甲基)青霉烷酸。Sheehan等人描述了上述几种化合物在德国专利第2,416,492号和第2,643,085号中具有有用和有趣的抗微生物活性。然而,6.β.-(氨基甲基)青霉烷酸在此前未在任何出版物中描述过,因此是一种新化合物。本发明过程中产生的6.β.-(氨基甲基)青霉烷酸具有抗菌活性。此外,它是一种青霉素酶抑制剂,可与其他青霉素类抗生素联合用于感染治疗。因此,在标准微生物学测定中测试时,该化合物对金黄色葡萄球菌、克雷伯菌、枯草杆菌和铜绿假单胞菌等微生物在0.1至100微克/毫升的测试水平上显示出活性。因此,作为抗菌剂,该化合物通常被配制成口服、肌肉注射、静脉注射或局部治疗的形式。因此,本发明包括其范围内的药物组合物,该组合物包含有效量的新6.β.-(氨基甲基)青霉烷酸和兼容的药物载体,以及使用这些组合物治疗微生物感染的方法。该化合物的给药剂量取决于被治疗动物的年龄和体重、给药方式以及预防或减少的细菌感染的类型和严重程度。通常,每日给药剂量将在100-5000毫克范围内,其中500-1000毫克为首选。对于口服给药,该化合物可以制备成片剂、胶囊、糖浆等形式。对于肠胃外给药,它可以制备成用于肌肉注射的溶液或悬浮液。局部制剂包括乳膏、软膏、凝胶等。
  • CYTOTOXIC PEPTIDES AND ANTIBODY DRUG CONJUGATES THEREOF
    申请人:PFIZER INC.
    公开号:US20130129753A1
    公开(公告)日:2013-05-23
    The present invention is directed to cytotoxic pentapeptides, to antibody drug conjugates thereof, and to methods for using the same to treat cancer.
    本发明涉及细胞毒性五肽,其抗体药物偶联物,以及使用它们治疗癌症的方法。
  • Antithrombotic diamines
    申请人:Eli Lilly and Company
    公开号:US06025382A1
    公开(公告)日:2000-02-15
    This application relates to the use as thrombin inhibitors, coagulation inhibitors and thromboembolic disorder agents of diamines of formula I as defined herein. It also provides novel compounds of formula I, processes and intermediates for their preparation, and pharmaceutical formulations comprising the novel compounds of formula I.
    该应用涉及将I式中所定义的二胺用作凝血酶抑制剂、凝血抑制剂和血栓栓塞性疾病药剂。它还提供了I式的新化合物,其制备方法和中间体,以及包含这些新化合物的药物配方。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台