Antibiotic resistance is a critical global health care crisis requiring urgent action to develop more effective antibiotics. Utilizing the hydrophobic scaffold of xanthone, we identified three components that mimicked the action of an antimicrobial cationic peptide to produce membrane-targeting antimicrobials. Compounds 5c and 6, which contain a hydrophobic xanthone core, lipophilic chains, and cationic amino acids, displayed very promising antimicrobial activity against multidrug-resistant Gram-positive bacteria, including MRSA and VRE, rapid timekill, avoidance of antibiotic resistance, and low toxicity. The bacterial membrane selectivity of these molecules was comparable to that of several membrane-targeting antibiotics in clinical trials. 5c and 6 were effective in a mouse model of corneal infection by S. aureus and MRSA. Evidence is presented indicating that 5c and 6 target the negatively charged bacterial membrane via a combination of electrostatic and hydrophobic interactions. These results suggest that 5c and 6 have significant promise for combating life-threatening infections.
various parts of the mangosteen, Garcinia mangostana L. (Clusiaceae), a well-known tropical fruit. Novel xanthonederivatives based on α-mangostin were synthesized and evaluated as anti-cancer agents by cytotoxicity activity screening using 5 human cancer cell lines. Some of these analogs had potent to moderate inhibitory activities. The structure–activity relationship studies revealed that phenol groups
their cytotoxicity against a panel of five humancancercelllines (HL-60, SMMC-7721, A-549, MCF-7 and SW480) using MTT assays. Most of them showed cytotoxicity and most of all, compounds 1a and 2h showed the highest cytotoxicpotency by HL-60 cancercelllines with IC50 values of 5.96 μM and 6.90 μM respectively; compound 3e showed the highest cytotoxicpotency against SMMC-7221 cancercell line with