摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-[2-(5-ethynylthiophen-2-yl)ethenyl]thiophene-2-carbaldehyde | 791111-25-6

中文名称
——
中文别名
——
英文名称
5-[2-(5-ethynylthiophen-2-yl)ethenyl]thiophene-2-carbaldehyde
英文别名
——
5-[2-(5-ethynylthiophen-2-yl)ethenyl]thiophene-2-carbaldehyde化学式
CAS
791111-25-6
化学式
C13H8OS2
mdl
——
分子量
244.338
InChiKey
GGMGGAHFJXDKFC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.77
  • 重原子数:
    16.0
  • 可旋转键数:
    3.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    17.07
  • 氢给体数:
    0.0
  • 氢受体数:
    3.0

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    χ(2) Grating in Ru Derivative Chromophores Incorporated within the PMMA Polymer Matrices
    摘要:
    We have found that Ru derivative chromophores incorporated into the PMMA polymer matrices might be considered as promising materials for optical poling. The maximally achieved effective second-order optical susceptibility for the wavelength 1.89 mum is about 1.94 pm/V. The investigated composites possess metastable trapping levels originating both from the d states of Ru and due to effective charge transfer due to the presence of pi-conjugated states. Because of incorporation of the chromophore into polymer matrices, we have revealed that the maximal susceptibility is observed at 5-6% of the chromophore in weighting units. The further increase of the second-order susceptibility is limited by the appearance of chromophore agglomerates substantially restraining second-order susceptibilities. The investigated composites possess long-lived chi((2)) grating, which decreases less than 76% after 600 min of laser treatment. The electrostatic field causes additional reanimation of the second harmonic generation during the decay regime. The electron microscopy pictures clearly confirm appearance of the chi((2)) grating.
    DOI:
    10.1021/jp048794h
点击查看最新优质反应信息

文献信息

  • Second-order optical effects in organometallic nanocomposites induced by an acoustic field
    作者:A. Migalska-Zalas、B. Sahraoui、I. V. Kityk、S. Tkaczyk、V. Yuvshenko、J.-L. Fillaut、J. Perruchon、T. J. J. Muller
    DOI:10.1103/physrevb.71.035119
    日期:——
    Acoustically stimulated second-order optical effects in Ru-derivative nanocomposites were discovered. The alkynyl ruthenium derivatives were embedded in a polymethyl methacrylate (PMMA) polymer matrix. As second-order optical effects we studied second-harmonic generation (SHG) and linear electro-optics (LEO) phenomena. The physical insight of the effect observed consists in a coexistence of nanocofined chromophore levels and localized d states of ruthenium. A transverse acoustic field favors the occurrence of charge density noncentrosymmetry required for observation of the second-order optical effects, particularly SHG. We have found that acoustically induced SHG and LEO for fundamental YAB-Gd3+ laser light (lambda=1.76 mum) increases and achieves a maximum value at acoustic power density of about 1.45 W/cm(2). The values of the SHG for several Ru chromophores were higher than those for well-known inorganic crystals. With decreasing temperature, the SHG signal strongly increases below 55 K and correlates well with occurrence of "softlike" low-frequency anharmonic quasiphonon modes responsible for the phase transitions. The SHG maxima were observed at acoustic frequencies of about 13 kHz. Increasing of acoustical frequencies up to the megahertz range suppresses the observed phenomena. Comparing the obtained results with the acoustically induced Raman spectra at different temperatures one can conclude that the observed effects are due to acoustically induced electron-vibration anharmonicity, and are observed at temperatures below 55 K. Varying the chromophore content within the embedded matrices we were able to use effective nanoparticle sizes within the range 5-60 nm. It is clearly shown that the enhancement of the effective nanosize effectively suppresses the observed second-order optical effects.
查看更多

同类化合物

()-2-(5-甲基-2-氧代苯并呋喃-3(2)-亚乙基)乙酸乙酯 (双(2,2,2-三氯乙基)) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-氨氯地平-d4 (S)-8-氟苯并二氢吡喃-4-胺 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (SP-4-1)-二氯双(喹啉)-钯 (SP-4-1)-二氯双(1-苯基-1H-咪唑-κN3)-钯 (R,S)-可替宁N-氧化物-甲基-d3 (R,S)-六氢-3H-1,2,3-苯并噻唑-2,2-二氧化物-3-羧酸叔丁酯 (R)-(+)-5'-苄氧基卡维地洛 (R)-(+)-2,2'',6,6''-四甲氧基-4,4''-双(二苯基膦基)-3,3''-联吡啶(1,5-环辛二烯)铑(I)四氟硼酸盐 (R)-卡洛芬 (R)-N'-亚硝基尼古丁 (R)-DRF053二盐酸盐 (R)-4-异丙基-2-恶唑烷硫酮 (R)-3-甲基哌啶盐酸盐; (R)-2-苄基哌啶-1-羧酸叔丁酯 (N-(Boc)-2-吲哚基)二甲基硅烷醇钠 (N-{4-[(6-溴-2-氧代-1,3-苯并恶唑-3(2H)-基)磺酰基]苯基}乙酰胺) (E)-2-氰基-3-(5-(2-辛基-7-(4-(对甲苯基)-1,2,3,3a,4,8b-六氢环戊[b]吲哚-7-基)-2H-苯并[d][1,2,3]三唑-4-基)噻吩-2-基)丙烯酸 (E)-2-氰基-3-[5-(2,5-二氯苯基)呋喃-2-基]-N-喹啉-8-基丙-2-烯酰胺 (8α,9S)-(+)-9-氨基-七氢呋喃-6''-醇,值90% (6R,7R)-7-苯基乙酰胺基-3-[(Z)-2-(4-甲基噻唑-5-基)乙烯基]-3-头孢唑啉-4-羧酸二苯甲基酯 (6-羟基嘧啶-4-基)乙酸 (6,7-二甲氧基-4-(3,4,5-三甲氧基苯基)喹啉) (6,6-二甲基-3-(甲硫基)-1,6-二氢-1,2,4-三嗪-5(2H)-硫酮) (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5R,Z)-3-(羟基((1R,2S,6S,8aS)-1,3,6-三甲基-2-((E)-prop-1-en-1-yl)-1,2,4a,5,6,7,8,8a-八氢萘-1-基)亚甲基)-5-(羟甲基)-1-甲基吡咯烷-2,4-二酮 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-(4-乙氧基-3-甲基苄基)-1,3-苯并二恶茂) (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氯-2,1,3-苯并噻二唑-4-基)-氨基甲氨基硫代甲酸甲酯一氢碘 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (5-氨基-1,3,4-噻二唑-2-基)甲醇 (4aS-反式)-八氢-1H-吡咯并[3,4-b]吡啶 (4aS,9bR)-6-溴-2,3,4,4a,5,9b-六氢-1H-吡啶并[4,3-B]吲哚 (4S,4''S)-2,2''-环亚丙基双[4-叔丁基-4,5-二氢恶唑] (4-(4-氯苯基)硫代)-10-甲基-7H-benzimidazo(2,1-A)奔驰(德)isoquinolin-7一 (4-苄基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4-甲基环戊-1-烯-1-基)(吗啉-4-基)甲酮 (4-己基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4,5-二甲氧基-1,2,3,6-四氢哒嗪)