Novel cross-link breaker based on zwitterion structure: Synthesis, structure and druggability studies
摘要:
It has been universally acknowledged that the increase in cardiac and vascular stiffness is due to the formation of advanced glycosylation end-products (AGEs). Research on the stable form of 3-(carboxymethyl)-4-methylthiazol bromide sodium salt (C6H7BrNNaO2S) showed that it had a notable effect on breaking the AGEs. Two compounds with novel structures, zwitterionic 3-(carboxymethyl)-4-methylthiazol (C6H7O2NS) and a dipolymer (C12H15O4N2S2Br) complex, were obtained. When compared with the forms of sodium salt and dipolymer, zwitterion had an obvious advantage in stability, solubility, synthesis and pH, which made the zwitterion a promising drug. The structure of sodium salt, dipolymer and zwitterion was comparatively analyzed by such methods as single crystal X-ray diffraction, ESI-MS, H-1 NMR, FT-IR and in situ IR. (C) 2013 The Authors. Published by Elsevier Masson SAS. All rights reserved.