Environmental Effects Dominate the Folding of Oligocholates in Solution, Surfactant Micelles, and Lipid Membranes
摘要:
Oligocholate foldamers with different numbers and locations of guanidinium-carboxylate salt bridges were synthesized. The salt bridges were introduced by incorporating arginine and glutamic acid residues into the foldamer sequence. The conformations of these foldamers were studied by fluorescence spectroscopy in homogeneous solution, anionic and nonionic micelles, and lipid bilayers. Environmental effects instead of inherent foldability were found to dominate the folding. As different noncovalent forces become involved in the conformations of the molecules, the best folder in one environment could turn into the worst in another. Preferential solvation was the main driving force for the folding of oligocholates in solution. The molecules behaved very differently in micelles and lipid bilayers, with the most critical factors controlling the folding-unfolding equilibrium being the solvation of ionic groups and the abilities of the surfactants/lipids to compete for the salt bridge. Because of their ability to fold into helices with a nonpolar exterior and a polar interior, the oligocholates could transport large hydrophilic molecules such as carboxyfluorescein across lipid bilayers. Both the conformational properties of the oligocholates and their binding with the guest were important to the transport efficiency.
Enhancing Binding Affinity by the Cooperativity between Host Conformation and Host–Guest Interactions
摘要:
Glutamate-functionalized oligocholate foldamers bound Zn(OAc)(2), guanidine, and even amine compounds with surprisingly high affinities. The conformational change of the hosts during binding was crucial to the enhanced binding affinity. The strongest cooperativity between the conformation and guest-binding occurred when the hosts were unfolded but near the folding-unfolding transition. These results suggest that high binding affinity in molecular recognition may be more easily obtained from large hosts capable of strong cooperative conformational changes instead of those with rigid, preorganized structures.