摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

cis-cyhx-[14]aneS4 | 146277-50-1

中文名称
——
中文别名
——
英文名称
cis-cyhx-[14]aneS4
英文别名
(1S,14R)-2,6,9,13-tetrathiabicyclo[12.4.0]octadecane
cis-cyhx-[14]aneS4化学式
CAS
146277-50-1
化学式
C14H26S4
mdl
——
分子量
322.624
InChiKey
FXFGLYRNCVPDND-OKILXGFUSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.6
  • 重原子数:
    18
  • 可旋转键数:
    0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    101
  • 氢给体数:
    0
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    描述:
    cis-cyhx-[14]aneS4 、 nickel(II) perchlorate 在 NaClO4 作用下, 以 乙腈 为溶剂, 生成 [(cis-cyhx-[14]aneS4)nickel(II)](2+)
    参考文献:
    名称:
    镍(II)-大环四硫醚配合物在乙腈中的形成和解离动力学以及晶体结构。与镍(II)-大环四胺的比较。
    摘要:
    已独立确定了溶剂化的镍(II)离子与八个大环四硫醚配体和一个无环类似物在乙腈中于25°C(mu = 0.15 M)反应的复合物形成和解离速率常数,该大环配体包括1,4,8,11 -四硫代环十四烷([14] aneS4)和七个衍生物,其中一个或两个亚乙基桥均被顺式或反式1,2-环己烷取代,而无环配体为2,5,9,12-四硫代十三烷(Me2- 2,3,2-S4)。与类似的关于Ni(II)与相应的大环四胺在乙腈和N,N-二甲基甲酰胺(DMF)中反应的复合物形成动力学研究相反,与大环四硫醚形成复合物的动力学没有显示出初始配位后缓慢构象变化的证据处理。这种不同的行为归因于这样的事实,即这种构象变化需要供体原子倒置,其容易被硫醚硫所容纳,但是需要从氮中提取氢(形成临时酰胺)。在亲脂性低的溶剂中,后一种方法不易进行。形成反应中的决定速率的步骤似乎在无环四硫醚的第一键形成点,但移至大环四硫醚复合物的螯合环
    DOI:
    10.1021/ic991019+
点击查看最新优质反应信息

文献信息

  • Effect of Conformational Constraints on Gated Electron-Transfer Kinetics. A Multifaceted Study on Copper(II/I) Complexes with cis- and trans-Cyclohexanediyl-[14]aneS4
    作者:Cynthia A. Salhi、Qiuyue Yu、Mary Jane Heeg、Nicole M. Villeneuve、Kerri L. Juntunen、Ronald R. Schroeder、L. A. Ochrymowycz、D. B. Rorabacher
    DOI:10.1021/ic00128a016
    日期:1995.11
    A multifaceted study has been conducted on the electron-transfer reactions of the copper(II/I) complexes formed with 2,3-cis- and 2,3-trans-cyclohexanediyl-1,4,8,11-tetrathiacyclotetradecane (designated as cis- and tmns-cyhx-[14]aneS(4)). Each system has been studied by (i) H-1-NMR line broadening in D2O to determine the electron self-exchange rate constants at zero driving force, (ii) rapid-scan cyclic voltammetry in 80% methanol-20% water (w/w) to determine the rate constants for conformational changes and heterogeneous electron transfer, and (iii) stopped-flow spectrophotometry using a total. of eight oxidizing and reducing counterreagents to determine the cross-reaction electron-transfer rate constants from which self-exchange rate constants can be calculated for various driving forces. The crystal structures of both Cu(II)L complexes and of Cu-I(trans-cyhx-[14]aneS(4)) have also been determined. From the NMR measurements, the electron self-exchange rate constants have been evaluated [at 25 degrees C, mu = 0.10 M (NO3-)] as k(11(ex)) = (5.0 +/- 0.5) x 10(4) and less than or equal to 10(3) M(-1) s(-1) for Cd-II/I(cis-) and Cu-II/I(trans-cyhx-[14]aneS(4)), respectively. Application of the Marcus relationship to the numerous cross-reaction rate constants yields variable behavior which is consistent with a dual-pathway mechanism for which the following self-exchange rate constants have been resolved [25 degrees C, mu = 0.10 M (ClO4-)]: for Cu-II/I(cis-cyhx-[14]aneS(4)), k(11(A)) = 5 x 10(4), k(11(B)) less than or equal to 10 M(-1) s(-1); for Cu-II/I(trans-cyhx-[14]aneS(4)), k(11(A)) = 2 x 10(3), k(11(B)) less than or equal to 10 M(-1) s(-1). The reduction reactions proceed by the most favorable pathway (pathway A) involving a metastable Cu(I)L intermediate (P) while the limiting oxidation reactions proceed by an alternate pathway (pathway B) involving a less stable Cu(II)L intermediate (Q). The change in pathway is mediated by the rate constant (k(RP)) for the formation of the Cu(I)L(P) intermediate from the stable Cu(I)L(R) complex. This latter rate constant has been estimated from both cyclic voltammetric measurements (CV, 80% methanol) and Cu(I)L homogeneous oxidation kinetics (Ox, H2O) as follows [25 degrees C]: for Cu-I(cis-cyhx-[14]aneS(4)), k(RP) = 4.4 x 10(2) (CV) and 1.1 x 10(2) s(-1) (Ox); for Cu-I(trans-cyhx-[14]aneS(4)), k(RP) = 1.5 x 10(2) (CV) and 32 s(-1) (Ox). The values obtained from homogeneous oxidations are believed to be the more reliable. The crystal structures reveal that both Cu(II)L complexes are square pyramidal with the four sulfur donor atoms occupying the basal plane and a coordinated water molecule (or anion) at the apex. The Cu-I(trans-cyhx-[14]aneS(4)) complex is in a flattened tetrahedral geometry in which all four sulfur donor atoms remain coordinated. These structures imply that, for each Cu(III)L system, two sulfur donor atoms must invert during the overall electron-transfer process. It is postulated that these donor atom inversions may represent the primary barrier for the conformational change represented in the R --> P step.The self-exchange rate constant representative of the electron-transfer step itself, corrected for the separate conformational change step, is estimated to be on the order of 10(6) M(-1) s(-1) for both systems, equivalent to the largest self-exchange rate constants known for rigid Cu(II/I)L systems. Crystal data [Mo K alpha radiation (lambda = 0.710 73 Angstrom)] are as follows. For [Cu-II(cis-cyhx-[14]aneS(4))(H2O)](ClO4)(2) (1): CuS4C14H28Cl2O9, triclinic system, space group P $(1) over bar$$, a = 9.734(4) Angstrom, b = 10.155(3) Angstrom, c = 13.058(4) Angstrom, alpha = 91.73(2)degrees, beta = 91.52(3)degrees, gamma = 117.75(3)degrees, V = 1140.6(7) Angstrom(3), Z = 2, R = 0.049, R(w) = 0.050, T = -110 degrees C. For [Cu-II(trans-cyhx-[14]aneS(4))(H2O)](ClO4)(2) (2a): CuS4Cl4H28Cl2O9, triclinic system, space group P $(1) over bar$$, a = 9.177(5) Angstrom, b = 10.641(5) Angstrom, c = 13.037(4) Angstrom, alpha = 87.26(3)degrees, beta = 88.13(4)degrees, gamma = 69.19(3)degrees, V = 1188.5(8) Angstrom(3), Z = 2, R = 0.050, R(w) = 0.056, T = -110 degrees C. For [Cu-II(trans-cyhx-[14]aneS(4))Cl]. 1/2CuCl(4) . H2O (2b): Cu1.5C14H28S4Cl3O, orthorhombic system, space group Pbcn, a = 28.206(7) Angstrom, b = 10.115(3) Angstrom, c = 14.707(2) Angstrom, V = 4196(2) Angstrom(3), Z = 8, R = 0.038, R(w) = 0.042, T = 22 degrees C. For [Cu-I(trans-cyhx-[14] aneS(4))]ClO4 . 1/4H(2)O (3): CuS4C14H26.5ClO4.25, monoclinic system, space group P2(1)/n, a = 10.135(2) Angstrom, b = 16.044(2) Angstrom, c = 12.675(2) Angstrom, beta = 105.10(1)degrees, V = 1989.9(5) Angstrom(3), Z = 4, R = 0.038, R(w) = 0.038, T = -110 degrees C.
  • Formation and Dissociation Kinetics and Crystal Structures of Nickel(II)−Macrocyclic Tetrathiaether Complexes in Acetonitrile. Comparison to Nickel(II)−Macrocyclic Tetramines
    作者:Chandrika P. Kulatilleke、Scott N. Goldie、Mary Jane Heeg、L. A. Ochrymowycz、D. B. Rorabacher
    DOI:10.1021/ic991019+
    日期:2000.4.1
    trans-1,2-cyclohexane, while the acyclic ligand is 2,5,9,12-tetrathiatridecane (Me2-2,3,2-S4). In contrast to similar complex formation kinetic studies on Ni(II) reacting with corresponding macrocyclic tetramines in acetonitrile and N,N-dimethylformamide (DMF), the kinetics of complex formation with the macrocyclic tetrathiaethers show no evidence of slow conformational changes following the initial coordination
    已独立确定了溶剂化的镍(II)离子与八个大环四硫醚配体和一个无环类似物在乙腈中于25°C(mu = 0.15 M)反应的复合物形成和解离速率常数,该大环配体包括1,4,8,11 -四硫代环十四烷([14] aneS4)和七个衍生物,其中一个或两个亚乙基桥均被顺式或反式1,2-环己烷取代,而无环配体为2,5,9,12-四硫代十三烷(Me2- 2,3,2-S4)。与类似的关于Ni(II)与相应的大环四胺在乙腈和N,N-二甲基甲酰胺(DMF)中反应的复合物形成动力学研究相反,与大环四硫醚形成复合物的动力学没有显示出初始配位后缓慢构象变化的证据处理。这种不同的行为归因于这样的事实,即这种构象变化需要供体原子倒置,其容易被硫醚硫所容纳,但是需要从氮中提取氢(形成临时酰胺)。在亲脂性低的溶剂中,后一种方法不易进行。形成反应中的决定速率的步骤似乎在无环四硫醚的第一键形成点,但移至大环四硫醚复合物的螯合环
查看更多

同类化合物

伊莫拉明 (双(2,2,2-三氯乙基)) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-氨氯地平-d4 (S)-8-氟苯并二氢吡喃-4-胺 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (SP-4-1)-二氯双(喹啉)-钯 (R,S)-可替宁N-氧化物-甲基-d3 (R)-(+)-5'-苄氧基卡维地洛 (R)-卡洛芬 (R)-N'-亚硝基尼古丁 (R)-4-异丙基-2-恶唑烷硫酮 (R)-3-甲基哌啶盐酸盐; (N-(Boc)-2-吲哚基)二甲基硅烷醇钠 (N-{4-[(6-溴-2-氧代-1,3-苯并恶唑-3(2H)-基)磺酰基]苯基}乙酰胺) (E)-2-氰基-3-[5-(2,5-二氯苯基)呋喃-2-基]-N-喹啉-8-基丙-2-烯酰胺 (8α,9S)-(+)-9-氨基-七氢呋喃-6''-醇,值90% (6R,7R)-7-苯基乙酰胺基-3-[(Z)-2-(4-甲基噻唑-5-基)乙烯基]-3-头孢唑啉-4-羧酸二苯甲基酯 (6,7-二甲氧基-4-(3,4,5-三甲氧基苯基)喹啉) (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-(4-乙氧基-3-甲基苄基)-1,3-苯并二恶茂) (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氯-2,1,3-苯并噻二唑-4-基)-氨基甲氨基硫代甲酸甲酯一氢碘 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (5-氨基-1,3,4-噻二唑-2-基)甲醇 (4aS-反式)-八氢-1H-吡咯并[3,4-b]吡啶 (4aS,9bR)-6-溴-2,3,4,4a,5,9b-六氢-1H-吡啶并[4,3-B]吲哚 (4S,4''S)-2,2''-环亚丙基双[4-叔丁基-4,5-二氢恶唑] (4-(4-氯苯基)硫代)-10-甲基-7H-benzimidazo(2,1-A)奔驰(德)isoquinolin-7一 (4-苄基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4-甲基环戊-1-烯-1-基)(吗啉-4-基)甲酮 (4-己基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4,5-二甲氧基-1,2,3,6-四氢哒嗪) (3Z)-3-(1H-咪唑-5-基亚甲基)-5-甲氧基-1H-吲哚-2-酮 (3Z)-3-[[[4-(二甲基氨基)苯基]亚甲基]-1H-吲哚-2-酮 (3S,4R)-3-氟四氢-2H-吡喃-4-胺 (3R)-(-)-3-(1-甲基吲哚-3-基)丁酸甲酯 (3-氯-4,5-二氢-1,2-恶唑-5-基)(1,3-二氧代-1,3-二氢-2H-异吲哚-2-基)乙酸 (2S,4aR,5S,8R,8aR)-8-乙基-4a,5-二羟基-六氢-2H-2,5-环氧色素-4(3H)-酮 (2S)-6-氟-3,4-二氢-4-氧代-2H-1-苯并吡喃-2-甲酸 (2S)-4-[7-(8-氯-1-萘)-5,6,7,8-四氢-2-[[((2S)-1-甲基-2-吡咯烷基]甲氧基]吡啶基[3,4-d]嘧啶-4-基]-1-(2-氟-1-氧代-2-丙烯-1-基)-2-哌Chemicalbook嗪乙腈;2-((S)-4-(7-(8-氯萘-1-基)-2-((((S)-1- (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇