摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-(6-Acetyl-3,3a,4,6a-tetramethyl-2,5-dithioxo-hexahydro-imidazo[4,5-d]imidazol-1-yl)-ethanone | 198063-34-2

分子结构分类

中文名称
——
中文别名
——
英文名称
1-(6-Acetyl-3,3a,4,6a-tetramethyl-2,5-dithioxo-hexahydro-imidazo[4,5-d]imidazol-1-yl)-ethanone
英文别名
——
1-(6-Acetyl-3,3a,4,6a-tetramethyl-2,5-dithioxo-hexahydro-imidazo[4,5-d]imidazol-1-yl)-ethanone化学式
CAS
198063-34-2
化学式
C12H18N4O2S2
mdl
——
分子量
314.433
InChiKey
FVHOQFRYJWRIAD-TXEJJXNPSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.58
  • 重原子数:
    20.0
  • 可旋转键数:
    0.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    47.1
  • 氢给体数:
    0.0
  • 氢受体数:
    4.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1-(6-Acetyl-3,3a,4,6a-tetramethyl-2,5-dithioxo-hexahydro-imidazo[4,5-d]imidazol-1-yl)-ethanonelithium tert-amoxide 作用下, 以 四氢呋喃 为溶剂, 反应 2.0h, 以62%的产率得到1-((3aS,6aR)-3,3a,4,6a-Tetramethyl-2,5-dithioxo-hexahydro-imidazo[4,5-d]imidazol-1-yl)-butane-1,3-dione
    参考文献:
    名称:
    A Facile Preparation of Thioglycolurils from Glycolurils, and Regioselectivity in Thioglycoluril Template-Directed Crossed-Claisen Condensations
    摘要:
    Mono- (5) and dithio (4) analogues of 3,4,7,8-tetramethylglycoluril (2) are readily prepared using Lawesson's reagent (1 equiv or excess, respectively). This novel application of Lawesson's reagent to glycolurils can be extended to N-acylglycolurils. Thus the N-acetyl and N-butanoyl derivatives of 2 are converted into the monoacyl-monothio analogues 8 and 9 in which thionation occurs at the least hindered urea carbonyl, Compared to the parent glycoluril 2, the thio analogues are more readily acylated; initial acylation of 5 occurs exclusively on the NH site adjacent to sulfur to give 13, while 4 is converted to either the monoacetyl (11) or diacetyl (12) derivative by acetic anhydride, depending on temperature. Unlike 2, acylation of 4 can be accomplished with tert-butoxide as base and then acyl halide. Further acetylation of 11 gives 12, while 8 gives the unsymmetrical diacetyl-monothioglycoluril 15 or acetyl butanoyl thioglycoluril 17, and 9 gives the isomeric acetyl butanoyl thioglycoluril 16. Derivative 12 undergoes a crossed Claisen-like condensation between the two acetyl groups to give acetoacetyldithioglycoluril (18), in a manner similar to the diacetyl derivative of the parent glycoluril, while 15 undergoes selective crossed-Claisen condensation, predominantly by deprotonation of the acetyl group adjacent to oxygen (2.2:1 ratio of 19:20), In crossed-Claisen condensations, both isomers of acetylbutanoylmonothioglycoluril rearranged to 3-ketohexanoyl and 2-ethyl-3-ketobutanoyl thioglycolurils (16 to 24 and 25; 17 to 26 and 27, respectively), When the selectivities for deprotonation of the acetyl moiety over the butanoyl moiety, and for deprotonation of the acyl group adjacent to oxygen over that adjacent to sulfur, reinforced each other, highly selective crossed-Claisen condensation was achieved (26:27 6:1), In contrast, when these two selectivities worked in opposition, reversal of the regiochemical outcome occurred (24:25 0.75:1), The results show that thionation provides a more sophisticated and selective template for development of intramolecular crossed-Claisen methodology using the glycoluril template-directed approach.
    DOI:
    10.1021/jo9713823
  • 作为产物:
    参考文献:
    名称:
    A Facile Preparation of Thioglycolurils from Glycolurils, and Regioselectivity in Thioglycoluril Template-Directed Crossed-Claisen Condensations
    摘要:
    Mono- (5) and dithio (4) analogues of 3,4,7,8-tetramethylglycoluril (2) are readily prepared using Lawesson's reagent (1 equiv or excess, respectively). This novel application of Lawesson's reagent to glycolurils can be extended to N-acylglycolurils. Thus the N-acetyl and N-butanoyl derivatives of 2 are converted into the monoacyl-monothio analogues 8 and 9 in which thionation occurs at the least hindered urea carbonyl, Compared to the parent glycoluril 2, the thio analogues are more readily acylated; initial acylation of 5 occurs exclusively on the NH site adjacent to sulfur to give 13, while 4 is converted to either the monoacetyl (11) or diacetyl (12) derivative by acetic anhydride, depending on temperature. Unlike 2, acylation of 4 can be accomplished with tert-butoxide as base and then acyl halide. Further acetylation of 11 gives 12, while 8 gives the unsymmetrical diacetyl-monothioglycoluril 15 or acetyl butanoyl thioglycoluril 17, and 9 gives the isomeric acetyl butanoyl thioglycoluril 16. Derivative 12 undergoes a crossed Claisen-like condensation between the two acetyl groups to give acetoacetyldithioglycoluril (18), in a manner similar to the diacetyl derivative of the parent glycoluril, while 15 undergoes selective crossed-Claisen condensation, predominantly by deprotonation of the acetyl group adjacent to oxygen (2.2:1 ratio of 19:20), In crossed-Claisen condensations, both isomers of acetylbutanoylmonothioglycoluril rearranged to 3-ketohexanoyl and 2-ethyl-3-ketobutanoyl thioglycolurils (16 to 24 and 25; 17 to 26 and 27, respectively), When the selectivities for deprotonation of the acetyl moiety over the butanoyl moiety, and for deprotonation of the acyl group adjacent to oxygen over that adjacent to sulfur, reinforced each other, highly selective crossed-Claisen condensation was achieved (26:27 6:1), In contrast, when these two selectivities worked in opposition, reversal of the regiochemical outcome occurred (24:25 0.75:1), The results show that thionation provides a more sophisticated and selective template for development of intramolecular crossed-Claisen methodology using the glycoluril template-directed approach.
    DOI:
    10.1021/jo9713823
点击查看最新优质反应信息

文献信息

  • Kinetics of glycoluril template-directed Claisen condensations — Effect of thionation of the glycoluril
    作者:Karen Kam、Mohammad Rahimizadeh、Robert S McDonald、Paul HM Harrison、Hao Chen、Stephen I Jenkins、Adrienne Pedrech
    DOI:10.1139/v05-119
    日期:2005.9.1

    Apparent rate constants for the tert-butoxide promoted Claisen-like condensation of a series of N1-acetyl-N6-aroyl-2,5-dithio-3,4,7,8-tetramethylglycolurils (9a–9f) to give N1-(3′-aroyl-3′-oxopropionyl)-2,5-dithio-3,4,7,8-tetramethylglycolurils (10a–10f) were determined by UV spectroscopy. Overall rate accelerations of 3.5- to 18-fold were found relative to the corresponding reactions of the 2,5-dioxo compounds (7a–7f). Analysis of the Hammett plot for 9 and comparison with that for 7 shows that the key C—C bond-forming step, where the enolate of the acetyl group of the substrate attacks the aroyl carbonyl group, is accelerated by the thio substitution. For electron-withdrawing substituents in the aroyl group, the acceleration is sufficient to make this step nonrate limiting: the Hammett ρ value drops from approx. 1.5 for electron-donating groups to 0.27 for electron-withdrawing groups. Deuterium substitution in the acetyl group reduces the rate slightly, a result consistent with a slow but partially reversible first step in which substrate is deprotonated. A similar acceleration and isotope effect are found when diacetyl glycoluril (2) and diacetyl dithio glycoluril (5) are compared. The implications of these results are discussed.Key words: glycoluril, Claisen condensation, kinetics, mechanism.

    对一系列N1-乙酰-N6-芳酰-2,5-二-3,4,7,8-四甲基甘酰胺(9a–9f)在叔丁氧化物促进下进行的类克莱森缩合反应的明显速率常数通过紫外光谱法确定。相对于相应的2,5-二酮化合物(7a–7f),发现整体速率加速为3.5至18倍。对9的Hammett图解和与7的比较显示,关键的C—C键形成步骤,即底物的乙酰基的烯醇体攻击芳酰羰基团,受到代替换的加速作用。对于芳酰基中的电子吸引取代基,加速足以使这一步骤不再限速:Hammett ρ值从对电子给予基约为1.5降至对电子吸引基约为0.27。在乙酰基中进行取代会略微降低速率,这一结果与底物被去质子化的缓慢但部分可逆的第一步一致。当比较二乙酰基甘酰胺(2)和二乙酰基二基甘酰胺(5)时,发现类似的加速和同位素效应。讨论了这些结果的影响。关键词:甘酰胺,克莱森缩合,动力学,机理。
查看更多

同类化合物

()-2-(5-甲基-2-氧代苯并呋喃-3(2)-亚乙基)乙酸乙酯 (甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (反式)-4-壬烯醛 (双(2,2,2-三氯乙基)) (乙腈)二氯镍(II) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (±)17,18-二HETE (±)-辛酰肉碱氯化物 (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (s)-2,3-二羟基丙酸甲酯 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 ([2-(萘-2-基)-4-氧代-4H-色烯-8-基]乙酸) ([1-(甲氧基甲基)-1H-1,2,4-三唑-5-基](苯基)甲酮) (Z)-5-辛烯甲酯 (Z)-4-辛烯醛 (Z)-4-辛烯酸 (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-盐酸沙丁胺醇 (S)-溴烯醇内酯 (S)-氨氯地平-d4 (S)-氨基甲酸酯β-D-O-葡糖醛酸 (S)-8-氟苯并二氢吡喃-4-胺 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(((2,2-二氟-1-羟基-7-(甲基磺酰基)-2,3-二氢-1H-茚满-4-基)氧基)-5-氟苄腈 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (SP-4-1)-二氯双(喹啉)-钯 (SP-4-1)-二氯双(1-苯基-1H-咪唑-κN3)-钯