[GRAPHICS]We describe the synthesis and characterization of the first generation of oligomers consisting of alternating repeats of alpha-amino acids and chiral N-alkyl-beta-alanine (beta-peptoid) residues. These chimeras are stable toward proteolysis, non-hemolytic, and possess antibacterial activity comparable to well-known antimicrobial agents. Moreover, the chimeras exhibit length-dependent, concentration-dependent, solvent-dependent, and ion-strength-dependent ellipticity, indicating the presence of a secondary structure in solution. Thus, alpha-peptide/beta-peptoid oligomers represent a promising novel peptidomimetic backbone construct for biologically active ligands.
[GRAPHICS]We describe the synthesis and characterization of the first generation of oligomers consisting of alternating repeats of alpha-amino acids and chiral N-alkyl-beta-alanine (beta-peptoid) residues. These chimeras are stable toward proteolysis, non-hemolytic, and possess antibacterial activity comparable to well-known antimicrobial agents. Moreover, the chimeras exhibit length-dependent, concentration-dependent, solvent-dependent, and ion-strength-dependent ellipticity, indicating the presence of a secondary structure in solution. Thus, alpha-peptide/beta-peptoid oligomers represent a promising novel peptidomimetic backbone construct for biologically active ligands.
preparation of a wide range ofdimeric buildingblocks, displaying different types of side-chains, for use in solid-phase synthesis (SPS) of libraries of this type of oligomers. The β-peptoid monomers were obtained by microwave-assisted aza-Michael additions to acrylic esters. Subsequent solution-phase peptide coupling with suitably protected α-amino acids afforded dimeric intermediates. Even sluggish peptide