摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

heptadeuteriotoluene | 71013-72-4

中文名称
——
中文别名
——
英文名称
heptadeuteriotoluene
英文别名
toluene-d7;1,2,3,4,5-pentadeuterio-6-dideuteriomethyl-benzene;2,3,4,5,6,α,α-heptadeuterio-toluene;Heptadeuterotoluol;1,2,3,4,5-pentadeuterio-6-(dideuteriomethyl)benzene
heptadeuteriotoluene化学式
CAS
71013-72-4
化学式
C7H8
mdl
——
分子量
99.0849
InChiKey
YXFVVABEGXRONW-QMUWOJKRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.7
  • 重原子数:
    7
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.14
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    heptadeuteriotolueneN-溴代丁二酰亚胺(NBS) 作用下, 以 四氯化碳 为溶剂, 反应 20.0h, 生成 苄基溴-d7
    参考文献:
    名称:
    Guthrie, Robert D.; Shi, Buchang, Journal of the American Chemical Society, 1990, vol. 112, # 8, p. 3136 - 3139
    摘要:
    DOI:
  • 作为产物:
    描述:
    参考文献:
    名称:
    Effect of the internal rotation of the CHD2group on the aliphatic CH stretching mode of the toluenes C6H5CHD2and C6D5CHD2in solid crystalline phases
    摘要:
    The infrared and Raman spectra of the toluenes C6H5CHD2 and C6D5CHD2in the aliphatic CH stretching mode range have been recorded in a large temperature range (17 to 165 K) for both crystalline phases α and β. At very low temperature, the β form spectra show three bands; each of them is assigned to the vibration of a CH oscillator localized in a different site. Three groups of bands are also observed in the α phase spectra: a single band at higher frequency and two doublets at lower frequency. This splitting is assigned to the existence of two types of molecules in the unit cell, involving six different CH vibrators. A quantum theory of these spectra is carried out, assuming an anharmonic coupling of the CH stretching mode with the CHD2 torsion. As a consequence of this coupling, in the adiabatic approximation, the vibrational energy depends on the conformation and can be considered as an additional torsional potential. This latter has no ternary symmetry so that the total torsional potential has three principal unequal wells that correspond to three different locations of the CH oscillator. Therefore, no tunneling effect appears, which is in agreement with the classical interpretation. Furthermore, this theory ascribes the temperature dependence of the relative intensities of the νCH bands to the population density of the first torsional levels in the vibrational ground state and suggests that, at very low temperature, the isotopic system gets ordered. At higher temperature, a strong relaxation of the νCH vibration bands is observed. This relaxation is much stronger than that of the aromatic ring modes. Thus the relaxation process is essentially due to the influence of the anharmonic coupling between the CH stretching mode and the τCHD2 mode. Two mechanisms are considered: the first one involves Markovian jumps of the system from an equilibrium position to another one, the second one involves fluctuations of the CH vibration around each of these equilibrium positions. NMR and neutron scattering data have already been analyzed on the basis of the first process. Starting from the residence times so determined, the computations show that this mechanism is an efficient relaxation process, but indicate that it is not sufficient to fit the experimental profiles. This fit is obtained rather by using the second model with parameters of reasonable physical values; thus, the second process is also efficient. A better treatment of the relaxation process would be to elaborate; it would have to include both mechanisms and to take into account motions of the methyl group with different amplitudes.
    DOI:
    10.1063/1.443567
点击查看最新优质反应信息

文献信息

  • Organopotassium‐Catalyzed Silylation of Benzylic C(<i>sp</i><sup>3</sup>)−H Bonds
    作者:Baptiste Neil、Lamine Saadi、Louis Fensterbank、Clément Chauvier
    DOI:10.1002/anie.202306115
    日期:2023.8
    Abstract

    Benzylsilanes have found increasing applications in organic synthesis as bench‐stable synthetic intermediates, yet are mostly produced by stoichiometric procedures. Catalytic alternatives based on the atom‐economical silylation of benzylic C(sp3)−H bonds remain scarcely available as specialized directing groups and catalytic systems are needed to outcompete the kinetically‐favored silylation of C(sp2)−H bonds. Herein, we describe the first general and catalytic‐in‐metal undirected silylation of benzylic C(sp3)−H bonds under ambient, transition metal‐free conditions using stable tert‐butyl‐substituted silyldiazenes (tBu−N=N−SiR3) as silicon source. The high activity and selectivity of the catalytic system, exemplified by the preparation of various mono‐ or gem‐bis benzyl(di)silanes, originates from the facile generation of organopotassium reagents, including tert‐butylpotassium.

    摘要苄基硅烷作为稳定的合成中间体,在有机合成中的应用日益广泛,但大多是通过化学计量法生产的。基于苄基 C(sp3)-H 键原子经济硅烷化的催化替代品仍然很少,因为需要专门的定向基团和催化系统才能与动力学上有利的 C(sp2)-H 键硅烷化竞争。在本文中,我们首次介绍了以稳定的叔丁基取代的二氮(tBu-N=N-SiR3)为源,在无过渡属的环境条件下,对苄基 C(sp3)-H 键进行的通用属内催化非定向硅烷化反应。该催化系统的高活性和高选择性源于有机钾试剂(包括叔丁基)的简便生成,以制备各种单苄基或双苄基(二)硅烷为例。
  • Formation of deuterium atoms in the pyrolysis of toluene-d8 behind shock waves. Kinetics of the reaction C7D8 + H .fwdarw. C7D7H + D
    作者:V. Subba Rao、Gordon B. Skinner
    DOI:10.1021/j150663a035
    日期:1984.9
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫