1-(2′-Anilinyl)prop-2-yn-1-ol Rearrangement for Oxindole Synthesis
作者:Prasath Kothandaraman、Bing Qin Koh、Taweetham Limpanuparb、Hajime Hirao、Philip Wai Hong Chan
DOI:10.1002/chem.201202606
日期:2013.2.4
on NIS (N‐iodosuccinimide)‐mediated cycloisomerization reactions of 1‐(2′‐anilinyl)prop‐2‐yn‐1‐ols to gem‐3‐(diiodomethyl)indolin‐2‐ones and 2‐(iodomethylene)indolin‐3‐ones has been developed. The reactions were shown to be chemoselective, with secondary and tertiary alcoholic substrates exclusively giving the 3‐ and 2‐oxindole products, respectively. In the case of the latter, the transformation features
Benzoazepine-Fused Isoindolines via Intramolecular (3 + 2)-Cycloadditions of Azomethine Ylides with Dinitroarenes
作者:Steven M. Wales、Daniel J. Rivinoja、Michael G. Gardiner、Melissa J. Bird、Adam G. Meyer、John H. Ryan、Christopher J. T. Hyland
DOI:10.1021/acs.orglett.9b01580
日期:2019.6.21
N-substituted α-amino acids to form unprecedented benzoazepine-fused isoindolines. The reaction proceeds via a dearomatization/rearomatization sequence involving an intramolecular (3 + 2)-cycloaddition between the in situ formed azomethine ylide and the dinitroarene. Various glycine derivatives are tolerated as well as branched substrates based on cyclic, α-mono-, and α,α-disubstituted amino acids, giving
The base-induced formal [4+3] cycloaddition reaction of C,N-cyclic azomethine imines with aza-ortho-quinone methides, generated in situ, is reported. This protocol provided an efficient method for the synthesis of biologically important 1,2,4-triazepine derivatives, with a wide substrate scope and excellent functional-group tolerance, and it gives moderate to excellent yields under mild conditions
A method for the preparation of indolines via palladium-catalyzed aerobic intramolecular allylic CH activation was developed. Oxygen was successfully used as oxidant with catalytic amount of 1,4-benzoquinone. 16 examples were reported, the majority of substrates gave moderate to good yields.
Batting the ylides: A simple procedure carried out under mild conditions allows the direct and efficientsynthesis of structurally diverse indoles. This approach involves a cascadereaction of sulfurylides and N‐(ortho‐chloromethyl)arylamides (see scheme).