A total synthesis of (+)-papulacandin D has been achieved in 31 steps, in a 9.2% overall yield from commercially available materials. The synthetic strategy divided the molecule into two nearly equal sized subunits, the spirocyclic C-arylglycopyranoside and the polyunsaturated fatty acid side-chain. The C-arylglycopyranoside was prepared in 11 steps in a 30% overall yield from triacetoxyglucal. The fatty acid side-chain was also prepared in 11 steps in a 30% overall yield from geraniol. The key strategic transformations in the synthesis are: (1) a palladium-catalyzed, organosilanolate-based cross-coupling reaction of a dimethylglucal-silanol with an electron-rich and sterically hindered aromatic iodide and (2) a Lewis-base catalyzed, enantioselective allylation reaction of a dienal and allyltrichlorosilane. A critical element in the successful execution of the synthesis was the development of a suitable protecting group strategy that satisfied a number of stringent criteria. (C) 2010 Elsevier Ltd. All rights reserved.
Chiral Phosphoric Acid-Catalyzed Enantioselective and Diastereoselective Spiroketalizations
摘要:
Catalytic enantioselective and diastereoselective spiroketalizations with BINOL-derived chiral phosphoric acids are reported. The chiral catalyst can override the inherent preference for the formation of thermodynamic spiroketals, and highly selective formation of nonthermodynamic spiroketals could be achieved under the reaction conditions.
Stille reaction is designed for the first time, allowing for the construction of a rich range of C(sp3)−C(sp3), C(sp3)−C(sp2), and C(sp3)−C(sp) bonds in good to high yields with excellent stereoselectivity under exceptionally mild conditions. The innovative use of synergistic photoredox/nickel catalysis enables a novel single-electron transmetalation process of stannane reagents, providing a new research