摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

K185 | 244160-11-0

中文名称
——
中文别名
——
英文名称
K185
英文别名
N-[2-(11-methoxy-6,7-dihydro-5H-indolo[2,1-a][2]benzazepin-13-yl)ethyl]butanamide
K185化学式
CAS
244160-11-0
化学式
C24H28N2O2
mdl
——
分子量
376.499
InChiKey
SPIFQXPRSJKRAO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.4
  • 重原子数:
    28
  • 可旋转键数:
    6
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.38
  • 拓扑面积:
    43.3
  • 氢给体数:
    1
  • 氢受体数:
    2

反应信息

  • 作为产物:
    描述:
    N-(2-(5-methoxy-1H-indol-3-yl)ethyl)butyramide四(三苯基膦)钯potassium acetate 、 sodium hydride 作用下, 以 四氢呋喃二甲胺 为溶剂, 反应 19.0h, 生成 K185
    参考文献:
    名称:
    Mapping the Melatonin Receptor. 6. Melatonin Agonists and Antagonists Derived from 6H-Isoindolo[2,1-a]indoles, 5,6-Dihydroindolo[2,1-a]isoquinolines, and 6,7-Dihydro-5H-benzo[c]azepino[2,1-a]indoles
    摘要:
    6H-Isoindolo[2,1-a]indoles (5, 7, 10, 13), 5,6-dihydroindolo[2,1-a]isoquinolines (20, 21), and 6,7-dihydro-5H-benzo[c]azepino[2,1-a]indoles (23, 25, 27, 30) have been prepared as melatonin analogues to investigate the nature of the binding site of the melatonin receptor. The affinity of analogues was determined in a radioligand binding assay using cloned human mt(1) and MT2 receptor subtypes expressed in NIH 3T3 cells. Agonist and antagonist potency was measured using the pigment aggregation response of a clonal line of Xenopus laevis melanophores. The 2-methoxyisoindolo[2,1-a]indoles (7a-d) showed much higher binding affinities than the parent isoindoles (5a-e), and whereas 7a-c were agonists in the functional assay, 7d and 5a-e were antagonists. The 2-ethoxyisoindolo[2,1-a]indoles (10a-d) showed reduced binding affinities compared to their methoxy analogues, while the 5-chloro derivative 13 showed a considerable reduction in binding affinity and potency compared to 7a. The 10-methoxy-5,6-dihydroindolo[2,1-a]isoquinolines (21a-c) had higher binding affinities than the corresponding parent indoloisoquinolines (20a-c) in the human receptor subtypes, and the parent compounds were antagonists whereas the 10-methoxy derivatives were agonists in the functional assay. The N-cyclobutanecarbonyl derivatives of both the parent (20d) and 10-methoxyl (21d) series had similar binding affinities and were both antagonists with similar potencies. The 11-methoxy-6,7-5H-benzo[c]azepino[2,1-a]indoles (25a-d) had higher binding affinities than the corresponding parent compounds (23a-d) at the MT2 receptor but similar affinities at the mt(1) site; all of the compounds were antagonists in the functional assay. Changing 11-methoxy for 11-ethoxy decreased the binding affinity slightly, and this was more evident at the MT2 receptor. All of the derivatives investigated had either the same or a greater affinity for the human MT2 receptor compared to the mt(1) receptor (range 1:1-1:132). This suggests that the mt(1) and MT2 receptor pockets differ in their ability to accommodate alkyl groups in the indole nitrogen region of the melatonin molecule. Two compounds (7c and 25c) were tested in functional assays on recombinant mt(1) and MT2 melatonin receptors. Compound 7c is a potent agonist with some selectivity (44-fold) for the MT2 receptor, while 25c is an MT2-preferring antagonist. Increasing the carbon chain length between N-1 of indole and the 2-phenyl group from n = 1 through n = 3 leads to a fairly regular decrease in the binding affinity, but, remarkably, when n = 3, it converts the methoxy compounds from melatonin agonists to antagonists. The Xenopus melatonin receptor thus cannot accommodate an N-n-alkyl chain attached to a 2-phenyl substituent with n > 2 in the required orientation to induce or stabilize the active receptor conformation.
    DOI:
    10.1021/jm980684+
点击查看最新优质反应信息

文献信息

  • Mapping the Melatonin Receptor. 6. Melatonin Agonists and Antagonists Derived from 6<i>H</i>-Isoindolo[2,1-<i>a</i>]indoles, 5,6-Dihydroindolo[2,1-<i>a</i>]isoquinolines, and 6,7-Dihydro-5<i>H</i>-benzo[<i>c</i>]azepino[2,1-<i>a</i>]indoles
    作者:Rüdiger Faust、Peter J. Garratt、Rob Jones、Li-Kuan Yeh、Andrew Tsotinis、Maria Panoussopoulou、Theodora Calogeropoulou、Muy-Teck Teh、David Sugden
    DOI:10.1021/jm980684+
    日期:2000.3.1
    6H-Isoindolo[2,1-a]indoles (5, 7, 10, 13), 5,6-dihydroindolo[2,1-a]isoquinolines (20, 21), and 6,7-dihydro-5H-benzo[c]azepino[2,1-a]indoles (23, 25, 27, 30) have been prepared as melatonin analogues to investigate the nature of the binding site of the melatonin receptor. The affinity of analogues was determined in a radioligand binding assay using cloned human mt(1) and MT2 receptor subtypes expressed in NIH 3T3 cells. Agonist and antagonist potency was measured using the pigment aggregation response of a clonal line of Xenopus laevis melanophores. The 2-methoxyisoindolo[2,1-a]indoles (7a-d) showed much higher binding affinities than the parent isoindoles (5a-e), and whereas 7a-c were agonists in the functional assay, 7d and 5a-e were antagonists. The 2-ethoxyisoindolo[2,1-a]indoles (10a-d) showed reduced binding affinities compared to their methoxy analogues, while the 5-chloro derivative 13 showed a considerable reduction in binding affinity and potency compared to 7a. The 10-methoxy-5,6-dihydroindolo[2,1-a]isoquinolines (21a-c) had higher binding affinities than the corresponding parent indoloisoquinolines (20a-c) in the human receptor subtypes, and the parent compounds were antagonists whereas the 10-methoxy derivatives were agonists in the functional assay. The N-cyclobutanecarbonyl derivatives of both the parent (20d) and 10-methoxyl (21d) series had similar binding affinities and were both antagonists with similar potencies. The 11-methoxy-6,7-5H-benzo[c]azepino[2,1-a]indoles (25a-d) had higher binding affinities than the corresponding parent compounds (23a-d) at the MT2 receptor but similar affinities at the mt(1) site; all of the compounds were antagonists in the functional assay. Changing 11-methoxy for 11-ethoxy decreased the binding affinity slightly, and this was more evident at the MT2 receptor. All of the derivatives investigated had either the same or a greater affinity for the human MT2 receptor compared to the mt(1) receptor (range 1:1-1:132). This suggests that the mt(1) and MT2 receptor pockets differ in their ability to accommodate alkyl groups in the indole nitrogen region of the melatonin molecule. Two compounds (7c and 25c) were tested in functional assays on recombinant mt(1) and MT2 melatonin receptors. Compound 7c is a potent agonist with some selectivity (44-fold) for the MT2 receptor, while 25c is an MT2-preferring antagonist. Increasing the carbon chain length between N-1 of indole and the 2-phenyl group from n = 1 through n = 3 leads to a fairly regular decrease in the binding affinity, but, remarkably, when n = 3, it converts the methoxy compounds from melatonin agonists to antagonists. The Xenopus melatonin receptor thus cannot accommodate an N-n-alkyl chain attached to a 2-phenyl substituent with n > 2 in the required orientation to induce or stabilize the active receptor conformation.
查看更多